Electric Charges and Fields

EXERCISE

ELEMENTRY

Q. 1 (1)
$\mathrm{Q}=\mathrm{ne}=10^{14} \times 1.6 \times 10^{-19} \Rightarrow \mathrm{Q}=1.6 \times 10^{-5} \mathrm{C}=16$ $\mu \mathrm{C}$
Electrons are removed, so chare will be positive.
Q. 2 (3)

The force will still remain $\frac{\mathrm{q}_{1} \mathrm{q}_{2}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}$.

Q. 3 (3)

We put a unit positive charge at O . Resultant force due to the charge placed at A and C is zero and resultant force due to B and D is towards D along the diagonal BD.
Q. 4 (3)
$\left|\overrightarrow{\mathrm{F}_{\mathrm{B}}}\right|=\left|\overrightarrow{\mathrm{F}_{\mathrm{C}}}\right|=\mathrm{k} \cdot \frac{\mathrm{Q}^{2}}{\mathrm{a}^{2}}$

Hence force experienced by the charge at A in the direction normal to BC is zero.
Q. 5 (2)

Suppose in the following figure, equilibrium of charge B is considered. Hence for it's equilibrium $\left|F_{A}\right|=\left|F_{C}\right|$
$\Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}^{2}}{4 \mathrm{x}^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{qQ}}{\mathrm{x}^{2}} \Rightarrow \mathrm{q}=\frac{-\mathrm{Q}}{4}$

Short Trick : For such type of problem the magnitude of middle charge can be determined if either of the
extreme charge is in equilibrium by using the following formula.

If charge A is in equilibrium then $q=-Q_{B}\left(\frac{x_{1}}{x}\right)^{2}$
If charge B is in equilibrium then $q=-Q_{A}\left(\frac{x_{2}}{x}\right)^{2}$
If the whole system is in equilibrium then use either of the above formula.

According to the question, $\mathrm{eE}=\mathrm{mg} \Rightarrow \mathrm{E}=\frac{\mathrm{mg}}{\mathrm{e}}$
Q. 7 (1)

Suppose electric field is zero at point N in the figure then

$\operatorname{AtN}\left|\mathrm{E}_{1}\right|=\left|\mathrm{E}_{2}\right|$
which gives $\mathrm{x}_{1}=\frac{\mathrm{x}}{\sqrt{\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}+1}}=\frac{11}{\sqrt{\frac{36}{25}}+1}=5 \mathrm{~cm}$
Q. 8
(2)

For balance $\mathrm{mg}=\mathrm{eE} \Rightarrow \mathrm{E}=\frac{\mathrm{mg}}{\mathrm{e}}$
Also $\mathrm{m}=\frac{4}{3} \pi \mathrm{r}^{3} \mathrm{~d}=\frac{4}{3} \times \frac{22}{7} \times\left(10^{-7}\right)^{3} \times 1000 \mathrm{~kg}$
$\Rightarrow \mathrm{E}=\frac{\frac{4}{3} \times \frac{22}{7} \times\left(10^{-7}\right)^{3} \times 1000 \times 10}{1.6 \times 10^{-19}}=260 \mathrm{~N} / \mathrm{C}$
Q. 9 (3)

At A and C , electric lines are equally spaced and dense that's why $\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{C}}>\mathrm{E}_{\mathrm{B}}$
Q. 10 (1)

Side $\mathrm{a}=5 \times 10^{-2} \mathrm{~m}$
Half of the diagonal of the square $r=\frac{a}{\sqrt{2}}$

$$
\phi=\frac{1}{\varepsilon_{0}} \times \mathrm{Q}_{\mathrm{enc}}=\frac{1}{\varepsilon_{0}}(2 \mathrm{q})
$$

Q. 15 (1)

Electric field due to a hollow spherical conductor is governed by following equation $\mathrm{E}=0$, for $r<R$
and $E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$ for $r \geq R$
i.e. inside the conductor field will be zero and outside the conductor will vary according to $\mathrm{E} \propto \frac{1}{\mathrm{r}^{2}}$
Q. 16 (3)

Electric field outside of the sphere $E_{\text {out }}=\frac{k Q}{r^{2}}$

Electric field inside the dielectric sphere $E_{i n}=\frac{k Q x}{R^{3}}$...(ii)
From (i) and (ii),

$$
E_{\text {in }}=E_{\text {out }} \times \frac{r^{2} x}{R}
$$

At 3 cm ,

$$
\mathrm{E}=100 \times \frac{3(20)^{2}}{10^{3}}=120 \mathrm{~V} / \mathrm{m}
$$

Q. 17 (2)

Since potential inside the hollow sphere is same as that on the surface.
Q. 18 (3)

ABCDE is an equipotential surface, on equipotential surface no work is done in shifting a charge from one place to another.
Q. 19 (2)

Electrostatic energy density $\frac{\mathrm{dU}}{\mathrm{dV}}=\frac{1}{2} \mathrm{~K} \varepsilon_{0} \mathrm{E}^{2}$
$\therefore \frac{\mathrm{dU}}{\mathrm{dV}} \propto \mathrm{E}^{2}$
Q. 20 (2)

Using $\mathrm{v}=\sqrt{\frac{2 \mathrm{QV}}{\mathrm{m}}} \Rightarrow \mathrm{v} \propto \sqrt{\mathrm{Q}}$

$$
\Rightarrow \frac{\mathrm{v}_{\mathrm{A}}}{\mathrm{v}_{\mathrm{B}}}=\sqrt{\frac{\mathrm{Q}_{\mathrm{A}}}{\mathrm{Q}_{\mathrm{B}}}}=\sqrt{\frac{\mathrm{q}}{4 \mathrm{q}}}=\frac{1}{2}
$$

Q. 21 (3)

At $\mathrm{O}, \mathrm{E}^{1} 0, \mathrm{~V}=0$

Q. 22 (1)

Potential at the centre of square

$$
\mathrm{V}=4 \times\left(\frac{9 \times 10^{9} \times 50 \times 10^{-6}}{2 / \sqrt{2}}\right)=90 \sqrt{2} \times 10^{4} \mathrm{~V}
$$

Work done in bringing a charge $(\mathrm{q}=50 \mathrm{mC})$ from ∞ to centre (O) of the square is $\mathrm{W}=\mathrm{q}\left(\mathrm{V}_{0}-\mathrm{V}_{\infty}\right)=\mathrm{qV}_{0}$
$\Rightarrow \mathrm{W}=50 \times 10^{-6} \times 90 \sqrt{2} \times 10^{4}=64 \mathrm{~J}$
Q. 23 (2)

Net electrostatic energy $U=\frac{k Q q}{a}+\frac{k q^{2}}{a}+\frac{k Q q}{a \sqrt{2}}=0$

$$
\Rightarrow \frac{\mathrm{kq}}{\mathrm{a}}\left(\mathrm{Q}+\mathrm{q}+\frac{\mathrm{Q}}{\sqrt{2}}\right)=0 \quad \Rightarrow \mathrm{Q}=-\frac{2 \mathrm{q}}{2+\sqrt{2}}
$$

Q. 24 (1)

Intensity at 5 m is same as at any point between B and C because the slope of BC is same throughout (i.e., electric field between B and C is uniform). Therefore electric field at $R=5 \mathrm{~m}$ is equal to the slope of line
$B C$ hence by $E=\frac{-d V}{d r}$;

$$
E=-\frac{(0-5)}{6-4}=2.5 \frac{\mathrm{~V}}{\mathrm{~m}}
$$

Q. 25 (1)

The electric potential $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=4 \mathrm{x}^{2}$ volt
Now $\vec{E}=-\left(\hat{i} \frac{\partial V}{\partial x}+\hat{j} \frac{\partial V}{\partial y}+\hat{k} \frac{\partial V}{\partial z}\right)$

Now $\frac{\partial \mathrm{V}}{\partial \mathrm{x}}=8 \mathrm{x}, \frac{\partial \mathrm{V}}{\partial \mathrm{y}}=0$ and $\frac{\partial \mathrm{V}}{\partial \mathrm{z}}=0$

Hence $\vec{E}=-8 x \hat{i}$, so at point $(1 \mathrm{~m}, 0,2 \mathrm{~m})$
$\overrightarrow{\mathrm{E}}=-8 \hat{\mathrm{i}}$ volt/metre or 8 along negative X-axis.

Q. 26 (1)

In non-uniform electric field. Intensity is more, where the lines are more denser.
Q. 27 (1)
$\mathrm{F}=\mathrm{QE}=\frac{\mathrm{QV}}{\mathrm{d}} \Rightarrow 5000=\frac{5 \times \mathrm{V}}{10^{-2}} \Rightarrow \mathrm{~V}=10$ volt
Q. 28 (3)

Using $\mathrm{dV}=-\overrightarrow{\mathrm{E}} . \overrightarrow{\mathrm{d}} \mathrm{r}$

$$
\Rightarrow \Delta \mathrm{V}=-\mathrm{E} \cdot \Delta \mathrm{r} \cos \theta
$$

$$
\Rightarrow E=\frac{-\Delta V}{\Delta r \cos \theta}
$$

$$
\Rightarrow
$$

$$
\mathrm{E}=\frac{-(20-10)}{10 \times 10^{-2} \cos 1120 \times 10^{-2}\left(-\sin 30^{\circ}\right)}=\frac{-10^{2}}{-1 / 2}=200
$$

V/m

Direction of E be perpendicular to the equipotential surface i.e. at 120° with x -axis.
Q. 29 (3)
Q. 30 (3)

Potential energy $=-\mathrm{pE} \cos \theta$
When $\theta=0$. Potential energy $=-\mathrm{pE}$ (minimum)
Q. 31 (4)

Work done $=\int_{90}^{270} \mathrm{pE} \sin \theta \mathrm{d} \theta=[-\mathrm{pE} \cos \theta]_{90}^{270}=0$

$\longrightarrow+q$
\longrightarrow
$-q$

Q. 32 (2)
Q. 33 (4)

Potential due to dipole in general position is given by

$$
\mathrm{V}=\frac{\mathrm{k} \cdot \mathrm{p} \cos \theta}{\mathrm{r}^{2}} \Rightarrow \mathrm{~V}=\frac{\mathrm{k} \cdot \mathrm{p} \cos \theta \mathrm{r}}{\mathrm{r}^{3}}=\frac{\mathrm{k} \cdot(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}})}{\mathrm{r}^{3}}
$$

Q. 34 (3)

Electric field near the conductor surface is given by $\frac{\sigma}{\varepsilon_{0}}$ and it is perpendicular to surface.

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1
Q. 2 (1)
Q. 3 (4)
Q. 4 (4)
$F=\frac{K q_{1} q_{2}}{r^{2}}$
$F_{1}=\frac{K q_{1} q_{2}}{(r / 2)^{2}}=\frac{4 \cdot \mathrm{Kq}_{1} q_{2}}{r^{2}}=4 F$
Q. 5 (3)

Attraction is possible between a charged and a neutral object.
Q. 6 There is no point near electric dipole having $\mathrm{E}=$ 0 .
Q. 7 (1)
$F=\frac{K q_{1} q_{2}}{r^{2}}=\frac{K q_{1} q_{2}}{\varepsilon r_{1}^{2}}$
$\frac{1}{(20 \mathrm{~cm})^{2}}=\frac{1}{5 r_{1}^{2}}$
$r_{1}^{2}=\frac{20 \times 20 \times 10^{-4}}{5}=80 \times 10^{-4}$
$r_{1}=8.94 \times 10^{-2} \mathrm{~m}$
Q. 8 (2)
$\mathrm{F}=\frac{\mathrm{Kq}(\mathrm{Q}-\mathrm{q})}{\mathrm{r}^{2}}$
$\frac{\mathrm{dF}}{\mathrm{dq}}=\frac{\mathrm{K}}{\mathrm{r}^{2}}[\mathrm{q}(-1)+(\mathrm{Q}-\mathrm{q}) 1]=0$
$-q+Q-q=0$
$\mathrm{Q}=2 \mathrm{q}$
$\frac{\mathrm{Q}}{\mathrm{q}}=\frac{2}{1}$
Q. 9 (3)

Q. 10 (2)

$F_{\text {net }}=\sqrt{F^{2}+F^{2}+2 F^{2} \cos 60^{0}}$
$=\sqrt{3} \mathrm{~F}=\sqrt{3} \frac{\mathrm{Kq}^{2}}{\mathrm{a}^{2}}$
Q. 11 (1)
$\stackrel{\sim}{\leftarrow} \rightarrow \leftarrow(30-x) \rightarrow$
$4 \mathrm{q} \quad \leftarrow \mathrm{E}-0 \rightarrow$
$\frac{K(4 q)}{x^{2}}=\frac{K q}{(30-x)^{2}}$
$x=20 \mathrm{~cm}$ from $4 q$
10 cm away from q

Q. 12 (4)

Length of the arrow showes magnitude

Resultant R is \perp to surface AB
Q. 13 (1)

Negative charge is placed to achieve equilibrium.

Net force on Q is zero
$\Rightarrow \frac{\mathrm{K} 4 \mathrm{qQ}}{(\ell-\mathrm{x})^{2}}=\frac{\mathrm{kqQ}}{\mathrm{x}^{2}}$
$\Rightarrow \mathrm{x}=\ell / 3$
Net force on q is also zero

$$
\Rightarrow \frac{\mathrm{kQq}}{(\ell / 3)^{2}}=\frac{\mathrm{k} 4 \mathrm{qq}}{\ell^{2}} ; \quad \mathrm{Q}=\frac{4 \mathrm{q}}{9}
$$

Q. 14 (4)

$\overrightarrow{\mathrm{F}}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}^{3}}(\overrightarrow{\mathrm{r}}) ;$ (By definition $)$
$\therefore \quad \overrightarrow{\mathrm{F}}=\frac{1}{4 \pi \varepsilon_{0}}$
$\frac{\mathrm{q}_{1} \mathrm{q}_{2}[(0-2) \hat{\mathrm{i}}+\{0-(-1)\} \hat{\mathrm{j}}+(0-3) \hat{\mathrm{k}}]}{\left[\sqrt{(0-2)^{2}+\{0-(-1)\}^{2}+(0-3)^{2}}\right]^{3}}$
$=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}} \cdot \frac{(-2 \hat{i}+\hat{j}-3 \hat{k})}{(\sqrt{4+1+9})^{3}}$
$=\frac{q_{1} q_{2}(-2 \hat{i}+\hat{j}-3 \hat{k})}{56 \sqrt{14} \pi \varepsilon_{0}}$
Q. 15 (1)

Charges are placed as shown on line AC.
For net force on q to be zero, Q must be of -ve sign.
If F_{1} is force on q due ot $4 q \& F_{2}$ due to Q
Then, $\mathrm{F}_{1}=\mathrm{F}_{2}$ (magnitudewise)
or $\frac{\mathrm{k} 4 \mathrm{q} \cdot \mathrm{q}}{\ell^{2}}=\frac{\mathrm{kQq}}{\left(\frac{\ell}{2}\right)^{2}}$
$\therefore 4 q=4 Q$
or $\mathrm{Q}=\mathrm{q} \quad$ (in magnitude)
$\therefore Q=-q$ (with sign)
Q. 16 (1)

Final charge on both spheres $=\frac{40-20}{2} \mu \mathrm{C}=10 \mu \mathrm{C}$
(each) [Distibution by conducting]
$\therefore \frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{F}_{\mathrm{f}}}=\frac{\left(\mathrm{q}_{1} \mathrm{q}_{2}\right)_{\mathrm{i}}}{\left(\mathrm{q}_{1} \mathrm{q}_{2}\right)_{\mathrm{f}}}=\frac{800}{100}=8: 1$
Q. 17

Initially, $F=\frac{k q_{1} q_{2}}{r^{2}}$
Finally, $4 F=\frac{k q_{1} q_{2}}{16 R^{2}}$

$$
\Rightarrow \frac{4 k q_{1} q_{2}}{r^{2}}=\frac{4 k q_{1} q_{2}}{16 R^{2}} \quad \text { or } R=\frac{r}{8}
$$

Q. 18 (4)

Resultant lie in between region COD
Q. 19 (2)

Let the two charges are $\mathrm{q} \&(20-\mathrm{q}) \mu \mathrm{C}$
$\therefore \mathrm{F}_{\mathrm{e}}=\frac{\mathrm{K}(\mathrm{q})(20-\mathrm{q})}{\mathrm{r}^{2}}$
F_{e} will be max, when $\frac{d F_{e}}{d q}=0$
or $\frac{d F e}{d q}=\frac{K}{r^{2}}(20-2 q)=0$
$\Rightarrow \therefore \mathrm{q}=10 \mu \mathrm{C}$.
Q. 20 (3)

Osillation
Q. 21 (2)
$\mathrm{F}=\mathrm{qE}$
$E=\frac{100}{2}=50 \mathrm{~N} / \mathrm{C}$
Q. 22 (1)

$$
\mathrm{E}_{\mathrm{Net}}=0
$$

Q. 23 (2)
$\mathrm{qE}=\mathrm{mg}$
$\mathrm{E}=\frac{\mathrm{mg}}{\mathrm{q}}=\frac{9.1 \times 10^{-31} \times 9.8}{1.6 \times 10^{-19}}$
$=5.6 \times 10^{-11} \mathrm{~N} / \mathrm{C}$
Q. 24 (4)
$|\overrightarrow{\mathrm{E}}|=\frac{\mathrm{kq}}{|\overrightarrow{\mathrm{r}}|^{2}}$
$\overrightarrow{\mathrm{r}}=(8-2) \hat{\mathrm{i}}+(-5-3) \hat{\mathrm{j}}$

Now $E=\frac{9 \times 10^{9} \times 50 \times 10^{-6}}{100} \Rightarrow E=4500 \mathrm{v} / \mathrm{m}$ Q. 25 (3)

$$
\overrightarrow{\mathrm{E}}_{\mathrm{A}}=\frac{\mathrm{Kq}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})}{(\sqrt{14})^{3}}
$$

$$
\overrightarrow{\mathrm{E}}_{\mathrm{B}}=\frac{\mathrm{Kq}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})}{(\sqrt{13})^{3}}
$$

$$
\overrightarrow{\mathrm{E}}_{\mathrm{c}}=\frac{\mathrm{Kq}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})}{(\sqrt{12})^{3}} \text { Now } \overrightarrow{\mathrm{E}}_{\mathrm{A}} \cdot \overrightarrow{\mathrm{E}}_{\mathrm{B}}=0
$$

$$
\Rightarrow \overrightarrow{\mathrm{E}}_{\mathrm{A}} \perp \overrightarrow{\mathrm{E}}_{\mathrm{B}}
$$

Q. 26 (4)

Q. 27 (2)

Force on charge $=\mathrm{qE}=\mathrm{qE}_{0} \sin \omega \mathrm{t}$ acceleration $=\frac{\mathrm{q} \varepsilon_{0}}{\mathrm{~m}} \sin \omega \mathrm{t}$

In SHM a=A $\omega^{2} \sin \omega t$
Comare (1) \& (2)

$$
A \omega^{2}=\frac{\mathrm{q} \varepsilon_{0}}{\mathrm{~m}} \Rightarrow \mathrm{~A}=\frac{\mathrm{q} \varepsilon_{0}}{\mathrm{~m} \omega^{2}}
$$

The given figure shows force diagram for charge
at O due to all other charges with $\mathrm{r}=\frac{10}{\sqrt{3}} \mathrm{~cm}$
$\therefore \quad \mathrm{F}_{\mathrm{net}}=2 \mathrm{~F}+4 \mathrm{~F} \cos 60^{\circ}=4 \mathrm{~F}$
$=\frac{4 \mathrm{k}(2 \mu \mathrm{c})(2 \mu \mathrm{c})}{\left(\frac{10}{\sqrt{3} 100}\right)^{2}}=\frac{4 \times 9 \times 10^{9} \times 2 \times 2 \times 10^{-12}}{\left(\frac{1}{300}\right)}$
$=36 \times 4 \times 300 \times 10^{-3} \mathrm{~N}=43.2 \mathrm{~N}$.(Towards E)
Q. 29 (2)
$a=\frac{q E}{m}$
After time t
$v=\frac{q E}{m} t$
$K E=\frac{1}{2} m v^{2}=\frac{E^{2} q^{2} t^{2}}{2 m}$
Q. 30 (4)
$\mathrm{W}=\mathrm{Fr} \cos \theta \Rightarrow \therefore 4=(0.2) \mathrm{E}$ (2) $\cos 60^{\circ}$ $\Rightarrow \therefore \mathrm{E}=20 \mathrm{~N} / \mathrm{C}$.

Q. 31 (2)

The electric field due to a point charge ' q ' at distance ' r ' from it is given as :
$\mathrm{E}=\frac{\mathrm{kq}}{\mathrm{r}^{2}}$;more is q , more is r for E to have same magnitude
$\therefore \quad$ By this mathematical analogy, electric field cannot be zero in the region iii
In region ii, electric field due to both charges is added \& net electric field is towards left
Along \perp. bisector line IV electric field due to both charges will be added vectorially \& can 't be zero
$\therefore \quad$ E.F (net) can be zero in region I only
(by mathematical analogy explained)
Q. 32 (3)

At point P on axis, $\mathrm{E}=\frac{\mathrm{kqx}}{\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}$

For $\max \mathrm{E}, \frac{\mathrm{dE}}{\mathrm{dx}}=0 \Rightarrow$ or $\mathrm{x}=\frac{\mathrm{R}}{\sqrt{2}}$
\therefore Putting x in (i) $\mathrm{E}_{\max }=\frac{2 \mathrm{kq}}{3 \sqrt{3} R^{2}}$
Q. 33 (1)
$E=\frac{K d q}{R^{2}}$

$$
\mathrm{dq}=\frac{\mathrm{d}}{2 \pi \mathrm{R}} \cdot \mathrm{~d}
$$

$$
E=\frac{K \phi}{2 \pi R^{3}} \cdot d \Rightarrow E \times \frac{1}{R^{3}}
$$

Q. 34 (1)

$==\frac{-\lambda}{2 \pi \in_{0} R} \hat{\mathrm{i}}$
Q. 35 (1)

$$
\sqrt{3} / 2 \frac{k \lambda}{d}
$$

$\theta_{1}=0, \theta_{2}=60^{\circ}$

$$
\begin{aligned}
& \mathrm{E}_{\perp}=\frac{\mathrm{k} \lambda}{\mathrm{~d}}\left[\sin 60^{\circ}+\sin 0^{\circ}\right]=\frac{\sqrt{3}}{2} \frac{\mathrm{k} \lambda}{\mathrm{~d}} \\
& \mathrm{E}_{\|}=\frac{\mathrm{k} \lambda}{\mathrm{~d}}\left[\cos 60^{\circ}-\cos 0^{\circ}\right]=\frac{-\mathrm{k} \lambda}{2 \mathrm{~d}} \\
& \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

Q. 36 (1)

a \& b can't be both + ve or both - ve otherwise field would have been zero at their mid point.
b can't be positive even, otherwise the field would have been in -ve direction to the right of mid point answer is (1)

Q. 37 (1)

By definition
Q. 38 (4)
Q. 39 (2)

Density of electric field lines at a point i.e. no. of lines per unit area shows magnitude of electric field at that point.
Q. 40 (3)
Q. 41 (2)
(2)

Incoming flux $\phi_{\text {in }}=\mathrm{E}_{0}(0)=0$
Out going flux $\phi_{\text {out }}=\mathrm{E}_{0}\left(\mathrm{a}^{2}\right)$
$\Rightarrow \phi_{\text {out }}-\phi_{\text {in }}=\frac{\mathrm{q}}{\varepsilon_{0}}$
$\mathrm{q}=\varepsilon_{0} \mathrm{E}_{0} \mathrm{a}^{2}$
Q. 42 (3)
$\overrightarrow{\mathrm{A}}=100 \hat{\mathrm{k}}, \overrightarrow{\mathrm{E}}=\hat{\mathrm{i}}+\sqrt{2} \hat{\mathrm{j}}+\sqrt{3} \hat{\mathrm{k}}$
$\phi=\vec{E} \bullet \vec{A}$
$\phi=100 \sqrt{3}$

Q. 44 (1)

$$
\phi=\int \overrightarrow{\mathrm{E}} \mathrm{~d} \overrightarrow{\mathrm{~s}},=\pi \mathrm{R}^{2} \mathrm{E}
$$

Q. 45 (4)

Radius of the cutting
$\operatorname{disc}=\sqrt{R^{2}-x^{2}}$

charge on disc
$\mathrm{q}=\sigma \mathrm{A}$
$\mathrm{q}=\sigma \pi\left(\mathrm{R}^{2}-\mathrm{x}^{2}\right)$
Now $\phi=\frac{\mathrm{q}}{\varepsilon_{0}}=\frac{\sigma \pi\left(\mathrm{R}^{2}-\mathrm{x}^{2}\right)}{\varepsilon_{0}}$

Q. 46 (2)

flux through differential element $\mathrm{d} \phi=\mathrm{E}_{0} \mathrm{x}$ a dx.
\therefore Net flux

$$
\Rightarrow \phi=\mathrm{E}_{0} \mathrm{a} \int_{0}^{\mathrm{a}} \mathrm{x} \cdot \mathrm{dx}=\frac{\mathrm{E}_{0} \mathrm{a}^{3}}{2}
$$

Q. 47 (1)

If charge is at A or D , its all field lines cut the given surface twice which means that net flux due to this charge remains zero and flux through given surface remains unchanged.

Net flux $=\phi_{2}-\phi_{1}=\frac{\mathrm{q}_{\mathrm{in}}}{\varepsilon_{0}} \mathrm{q}_{\mathrm{in}}=\varepsilon_{0}\left(\phi_{2}-\phi_{1}\right)$

Q. 43 (4)

Incoming flux $=$ Outgoing flux
Q. 49 (1)
since same no of field lines are passing through both spherical surfaces, so flux has same value for both.
Q. 50 (1)

Using Gauss's law for Gaussian surface shown in figure.
$\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dA}}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}} ; \mathrm{E} .2 \pi \mathrm{r} \ell=\frac{\lambda \ell}{\varepsilon_{0}}$
$\therefore E=\frac{\lambda}{2 \pi \varepsilon_{0} r}$
For circular motion.

$$
\mathrm{qE}=\frac{\mathrm{mV}^{2}}{\mathrm{r}}=\frac{\mathrm{q} \lambda}{2 \pi \varepsilon_{0} \mathrm{r}} \quad \therefore \mathrm{~V}=\sqrt{\frac{\mathrm{q} \lambda}{2 \pi \varepsilon_{0} \mathrm{~m}}}
$$

Q. 51 (3)

For the closed surface made by disc and hemisphere
$\mathrm{q}_{\mathrm{in}}=0$
$\therefore \quad \phi_{\text {net }}=0 \phi_{\text {disc }}+\phi_{\text {H.S }}=0$
$\therefore \quad \phi_{\mathrm{HS}}=-\phi_{\mathrm{disc}}=-\phi$
Q. 52 (3)

Flux $\phi=\frac{\Sigma q}{\epsilon_{0}}$

$\Sigma \mathrm{q}=\rho \mathrm{a}^{2} \mathrm{dx}$
$q=a^{2} \int \rho d x$
$=\mathrm{a}^{2}$ (area under curve)
$q=a^{2}\left(\frac{\rho_{0}}{8}+\frac{\rho_{0}}{2}+\frac{\rho_{0}}{8}\right)$
$q=\frac{3}{4} a^{2} \rho_{0}$
$\phi=\frac{3 / 4 \mathrm{a}^{2} \rho_{0}}{\varepsilon_{0}}=\frac{3}{4}$
Q. 53 (2)
$\phi=\frac{\mathrm{q}_{\mathrm{in}}}{\varepsilon_{0}}=\frac{\mathrm{q}_{2}+\mathrm{q}_{3}}{\varepsilon_{0}}$
$=-36 \pi \times 10^{3}$
Q. 54 (4)
$\mathrm{q}_{\text {in }}=0$
$\phi=0$
Q. 55 (1)

From notes electric field in a cavity
$\mathrm{E}=\frac{\rho}{3 \varepsilon_{0}} \vec{\ell}$

$\mathrm{F}=\mathrm{q} \varepsilon=\frac{\mathrm{q} \rho \vec{\ell}}{3 \varepsilon_{0}}$
Q. 56 (4)

By M.E. conservation between initial \& final point $\mathrm{U}_{\mathrm{i}}+\mathrm{K}_{\mathrm{i}}=\mathrm{U}_{\mathrm{f}}+\mathrm{K}_{\mathrm{f}}$
\therefore Answer is (4)
Q. 57 (3)
Q. 58 (2)
Q. 59 (4)
$V=\frac{K\left(-2 \times 10^{-6}\right)}{1 / 2}$
$\frac{K\left(-3 \times 10^{-6}\right)}{1 / 2}+\frac{K\left(-6 \times 10^{-6}\right)}{\sqrt{3} / 2}$
$-1.52 \times 10^{5} \mathrm{~V}$

Q. 60 (2)

$$
\begin{aligned}
& \therefore \frac{1}{2} m V_{A}^{2}=q V, \frac{1}{2} m V_{B}^{2}=4 q V \Rightarrow \therefore \frac{\mathrm{~V}_{A}^{2}}{\mathrm{~V}_{B}^{2}}=\frac{1}{4} \\
& \Rightarrow \frac{\mathrm{~V}_{A}}{\mathrm{~V}_{\mathrm{B}}}=\frac{1}{2}
\end{aligned}
$$

Q. 61 (4)

Comparison can be shown as :
$\mathrm{V} \rightarrow 2 \mathrm{~V} \Rightarrow \mathrm{k} \rightarrow 4 \mathrm{k} \Rightarrow \mathrm{PE}_{\max } \rightarrow 4 \mathrm{PE}_{\max } \Rightarrow \mathrm{r} \rightarrow \frac{\mathrm{r}}{4}$
Q. 62 (1)

$$
\therefore \mathrm{V}=\mathrm{Er}, \therefore \mathrm{r}=\frac{\mathrm{V}}{\mathrm{E}}=6 \mathrm{~m} .
$$

Q. 63 (2)

Apply the formula $V=\frac{k Q}{r}$
Q. 64 (1)

$$
\because \mathrm{V}_{\mathrm{C}}=\frac{\mathrm{kQ}}{\mathrm{r}} \therefore \mathrm{~V}_{\mathrm{C}}=\frac{9 \times 10^{9} \times 1.5 \times 10^{-9}}{(0.5)}=27 \mathrm{~V}
$$

Q. 65 (2)

Q. 66 (3)
K.E. $=\mathrm{VQ}$ and momentum $=\sqrt{2 m(\mathrm{KE})}=\sqrt{2 \mathrm{mVQ}}$

Q. 67 (2)

Potential at 5 cm .
$\Rightarrow 5 \mathrm{~cm}=\mathrm{V}=\frac{\mathrm{kq}}{(10 \mathrm{~cm})}$
(\because point lying inside the sphere)
Pontential at $15 \mathrm{~cm} \mathrm{~V}^{\prime} \Rightarrow 15 \mathrm{~cm} \quad \mathrm{~V}^{\prime}=\frac{\mathrm{kq}}{15 \mathrm{~cm}}=\frac{2}{3} \mathrm{~V}$.

Q. 68 (1)

$$
\because \quad \mathrm{V}=\frac{\mathrm{kq}}{\mathrm{r}}-\frac{\mathrm{kq}}{3 \mathrm{r}} \mathrm{~V}=\frac{2 \mathrm{kq}}{3 \mathrm{r}}
$$

\therefore Field intensity at distance 3 r from centre $=$

$$
\frac{\mathrm{kq}}{9 \mathrm{r}^{2}}=\frac{\mathrm{V}}{6 \mathrm{r}}
$$

Q. 69 (2)

The whole volume of a uniformly charged spherical shell is equipotential.
Q. 70 (3)
$\mathrm{PE}=\mathrm{q}\left(\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {initial }}\right)$
$P E=q \Delta V$ PE decreases if q is $+v e$ increases if q is -ve .

Q. 71 (2)

By conservation of machenical energy
$\frac{1}{2} m v^{2}=\frac{k q_{1} q_{2}}{r_{1}}-\frac{k q_{1} q_{2}}{r_{2}} \frac{1}{2}\left(2 \times 10^{-3}\right) v^{2}$

$$
=9 \times 10^{9} \times 10^{-6} \times 10^{-3}\left(\frac{1}{1}-\frac{1}{10}\right)
$$

or $v^{2}=9 \times 10^{3} \times \frac{9}{10} \quad$ or $v=90 \mathrm{~m} / \mathrm{sec}$

Q. 72 (3)

PE may increase may decrease depending on sign of charges.
Q. 73 (1)
P.E. of system $=\frac{2 K q^{2}}{a}+\frac{2 x k q^{2}}{a}+\frac{x k q^{2}}{a}=0$
where a is distance between charges.

$$
\text { or } 2+3 \mathrm{x}=0 \quad \therefore \mathrm{x}=-\frac{2}{3}
$$

Q. 74 (2)

from E.C.
$\frac{1}{2} m v^{2}=2\left(1 / 2 m v^{2}\right)+\frac{k q^{2}}{d}$
from
M.C. $m v=2 m u \Rightarrow u=v / 2$
...(2)
from (1) and (2)
$\frac{1}{2} m v^{2}=\frac{m v^{2}}{4}+\frac{k q^{2}}{d}$
$\mathrm{d}=\frac{4 \mathrm{kq}{ }^{2}}{\mathrm{mv}}{ }^{2}$
Q. 75 (2)
$\mathrm{U}=-\mathrm{QV}$
Q. 76 (4)

Let q is charge and a is radius of single drop.
$\therefore \quad \mathrm{U}_{\text {single drop }}=\frac{3 \mathrm{kq}^{2}}{5 \mathrm{a}}$
Now, charge on big drop $=$ nq.
\& let Radius of big drop is R.
\therefore By conservation of volume
$\Rightarrow \frac{4}{3} \pi \mathrm{R}^{3}=\mathrm{n} \cdot \frac{4}{3} \pi \mathrm{a}^{3} \Rightarrow \mathrm{R}=\mathrm{an}^{1 / 3}$.
$\therefore \quad$ P.E. of big drop
$=\frac{3}{5} \frac{\mathrm{k}(\mathrm{qn})^{2}}{\mathrm{R}}=\frac{3}{5} \frac{\mathrm{k} \cdot \mathrm{q}^{2} \mathrm{n}^{2}}{\mathrm{an}^{1 / 3}}=\mathrm{Un}^{\frac{5}{3}}$
Q. 77 (2)
$E=\frac{K q}{r^{2}} \quad ; V=\frac{K q(n-1)}{r}$
$\frac{V}{E}=r(n-1)$
Q. 82 (2)

$$
\frac{1}{2} \mathrm{mv}^{2}=\mathrm{eV} \therefore \mathrm{v}=\sqrt{\frac{2 \mathrm{eV}}{\mathrm{~m}}}
$$

Q. 83 (2)

Q. 84 (1)

$F_{1}=\frac{k(40)(20)}{d^{2}}$
After touching the charge on sphere $=10 \mu \mathrm{C}$

$F_{2}=\frac{k(10)(10)}{d^{2}}$
$\mathrm{F}_{1}: \mathrm{F}_{2}=8: 1$
Q. 85 (1)
Q. 86 (4)
$\mathrm{V}_{\mathrm{C}}=\frac{\mathrm{kQ}}{1}-\frac{\mathrm{kQ}}{2}+\frac{\mathrm{kQ}}{4}-\frac{\mathrm{kQ}}{8}+\ldots .$.
$=k Q\left[1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8} \cdots ..\right]$
$=k \mathrm{Q}\left[1+\frac{1}{4}+\frac{1}{16}+\ldots ..\right]-\mathrm{kQ}\left[\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\ldots\right]$
$=k Q\left\{\frac{1}{1-1 / 4}+\frac{1 / 2}{1-1 / 4}\right\}$
$\mathrm{V}_{\mathrm{C}}=\frac{\mathrm{Q}}{6 \pi \varepsilon_{0}}$
Q. 87 (1)
$\Delta V=E \cdot R$
$\Delta V=1000 \times 1 \times 10^{-2}=10$ Volt
Q. 88 (4)

When $\mathrm{E}=0$
$E=-\frac{d v}{d x}$
$\mathrm{V}=$ constant
Q. 89 (4)

equipotential surface
Angle between both $=90^{\circ}$
Q. 90 (3)

Since B and C are at same potential (lying on a line \perp to electric field i.e. equipotential surface)
$\therefore \Delta \mathrm{V}_{\mathrm{AB}}=\Delta \mathrm{V}_{\mathrm{AC}}=\mathrm{Eb}$.

Q. 91 (4)

Property of equipotential surface.
Q. 92 (1)
Q. 93 (4)
e.f is perpendicular to equipotential surface
m for e.f $=-\frac{1}{2}$
Now check option Ans - D
Q. 94 (3)

Integrate partially one of the term
$v=\int 4 a x y \sqrt{z} d x=$ const.
4ay $\sqrt{\mathrm{Z}} \frac{\mathrm{X}^{2}}{2}=$ const.
$z=\frac{\text { const. }}{x^{4} y^{2}}$
Q. 95 (1)

$$
\begin{array}{lc}
& F=q E \\
\Rightarrow \quad & 3000=3 \mathrm{E} \\
\Rightarrow \Delta \mathrm{~V}=\mathrm{E} \cdot \mathrm{~d}=1000 \times 10^{-2}=10 \text { volt }
\end{array}
$$

Q. 96 (1)

In a given figure

$$
\begin{aligned}
& \vec{E}=E \operatorname{Cos} Q \hat{i}+E \sin \theta \hat{j} \\
& d=d \hat{i}+d \hat{j} \\
& v=\vec{E} \cdot \vec{d}=E d(\operatorname{Cos} \theta+\operatorname{Sin} \theta)
\end{aligned}
$$

Q. 97 (4)

$$
\begin{aligned}
& y=3+x \quad \vec{E}=\frac{100}{\sqrt{2}}[\hat{i}+\hat{j}] \\
& d v=-\int \frac{100}{\sqrt{2}}[\hat{i}+\hat{j}] \cdot[d x \hat{i}+d y \hat{j}]
\end{aligned}
$$

$$
=-\frac{100}{\sqrt{2}}\left[\int_{3}^{1} \mathrm{dx}+\int_{1}^{3} \mathrm{dy}\right]
$$

$\Delta \mathrm{v}=0$

Q. 98 (2)

$$
\begin{aligned}
& \Delta \mathrm{V}=\mathrm{v}_{\mathrm{A}}-\mathrm{v}_{\mathrm{P}}=3 \mathrm{~V} \\
& \Rightarrow \mathrm{E}=\frac{\mathrm{V}}{\mathrm{~d}}=\frac{3}{\sqrt{(0.1)^{2}+(0.1)^{2}}}=15 \sqrt{2}
\end{aligned}
$$

Q. 99 (1)

(i) $\mathrm{E}=-\frac{\mathrm{dV}}{\mathrm{dr}}=-($ slope of curve $)$.
$\therefore \quad$ At r $=5 \mathrm{~cm}$, slope $=-\frac{5}{2} \mathrm{~V} / \mathrm{cm}=-2.5 \mathrm{~V} / \mathrm{cm}$
$\therefore \mathrm{E}_{\text {(at sin) }}=2.5 \mathrm{~V} / \mathrm{cm}$

Q. 100 (4)

At origin, $\mathrm{E}=-\frac{\mathrm{dV}}{\mathrm{dr}}=-2.5 \mathrm{~V} / \mathrm{cm}=-250 \mathrm{~V} / \mathrm{m}$
$\therefore \quad F=$ force on $2 C=q E=2 \times(-250) N=-500$ N.
Q. 101 (1)
$E=-\frac{d V}{d x}=-10 x-10$
$\therefore \mathrm{E}_{(\mathrm{x}=1 \mathrm{~m})}-10(1)-10=-20 \mathrm{~V} / \mathrm{m}$
Q. 102 (2)

$$
\begin{aligned}
& \Delta \mathrm{V}=-\mathrm{E} \Delta \mathrm{x} \\
\Rightarrow & \mathrm{~V}_{\mathrm{x}}-0=-\mathrm{E}_{0} \mathrm{x} . \text { or } \mathrm{V}_{\mathrm{x}}=-\mathrm{E}_{0} \mathrm{x}
\end{aligned}
$$

Q. 103 (2)

Given $\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}$
$\frac{\sigma}{2 \varepsilon_{0}}\left(r_{2}-r_{1}\right)=5 \mathrm{~V}$
$\mathrm{r}_{2}-\mathrm{r}_{1}=0.88 \mathrm{~mm}$
Q. 104 (2)
$\because \mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{y}}=\mathrm{E}_{\mathrm{z}}$
$\mathrm{E}_{\mathrm{x}}=\frac{10-8}{\Delta \mathrm{t}}=2 \mathrm{v} / \mathrm{m}$

Now $\overrightarrow{\mathrm{E}}=2 \hat{i}+2 \hat{j}+2 \hat{k}$
$d v=-E \cdot d r=(2 \hat{i}+2 \hat{j}+2 \hat{k})(d x \hat{i}+d y \hat{j}+d \hat{k})$
$v_{f}-v_{i}=\left[\int_{0}^{1} 2 d x+\int_{0}^{1} 2 d y \int_{0}^{1} 2 d z\right]$
$\mathrm{v}_{\mathrm{f}}-10=-[2+2+2], \mathrm{v}_{\mathrm{f}}=4 \mathrm{v}$
Q. 105 (2)
$V=k\left(2 x^{2}-y^{2}+z^{2}\right)$
$E=-\left[\frac{d V}{d x} \hat{i}+\frac{d V}{d y} j+\frac{d V}{d z} \hat{k}\right] K$
$E=-[4 x \hat{i}-2 y \hat{j}+2 z \hat{k}] K$
$E_{(0,1,1)}==-[4 x \hat{i}-2 \hat{y} \hat{j}+2 z \hat{k}] K$
$|\mathrm{E}|=2 \mathrm{k} \sqrt{6}$
Q. 106 (3)
Q. 107 (3)
$\mathrm{P}=\mathrm{qd}$
$1 \times 10^{-6} \times 2 \times 10^{-2}=2 \times 10^{-8}$
Maximum torque
$\tau=\mathrm{PE}=2 \times 10^{-2} \mathrm{Nm}$
Q. 108 (2)
$E_{a x i s}=\frac{2 K P}{r^{3}}$

$$
\begin{aligned}
& E_{1}=\frac{K P}{r^{3}} \\
& \frac{E_{a x i s}}{E_{1}}=\frac{2}{1}
\end{aligned}
$$

Q. 109 (1)
Q. 110 (3)

Since P \& Q are axial \& equatorial points, so electric fields are parallel to axis at both points.
Q. 111 (3)

In shown diagram, $\vec{E}=$ Net electric field vector due to dipole. (by derivation) $\& \tan \alpha=\frac{1}{2} \tan \theta$
$\therefore \quad$ Angle made by $\overrightarrow{\mathrm{E}}$ with x -axis is $(\theta+\alpha)$
Q. 112 (3)
$\tau_{\text {max }}=\mathrm{pE} \sin 90^{\circ}=10^{-6} \times 2 \times 10^{-2} \times 1 \times 10^{5} \mathrm{~N}-\mathrm{m}$ $=2 \times 10^{-3} \mathrm{~N}-\mathrm{m}$
Q. 113 (3)
$\max \mathrm{PE} \Rightarrow$ position of unstable equilibrium $\Rightarrow \theta=$ π.
Q. 114 (4)
$\tau_{\max }=\mathrm{PE}=4 \times 10^{-8} \times 2 \times 10^{-4} \times 4 \times 10^{8}=32 \times$ $10^{-4} \mathrm{~N}-\mathrm{m}$.
Work done $\mathrm{W}=(\text { P.E. })_{\mathrm{f}}-(\text { P.E. })_{\mathrm{i}}=\mathrm{PE}-(-\mathrm{PE})=$ $2 \mathrm{PE}=64 \times 10^{-4} \mathrm{~N}-\mathrm{m}$
Q. 115 (3)

At a point ' P ' on axis of dipole electric field $\mathrm{E}=$ $\frac{2 \mathrm{kp}}{\mathrm{r}^{3}}$ and electric potential $\mathrm{V}=\frac{\mathrm{kp}}{\mathrm{r}^{2}}$
both nonzero and electric field along dipole on the axis.
Q. 116 (4)

Force on one dipole due to another
$=P\left(\frac{d E}{d r}\right)$ where E is field due to second dipole at first dipole.
$\mathrm{E} \alpha \frac{1}{\mathrm{r}^{3}} \therefore \frac{\mathrm{dE}}{\mathrm{dr}} \alpha \frac{1}{\mathrm{r}^{4}}$
\therefore Force $\alpha \frac{1}{\mathrm{r}^{4}}$
Q. 117 (1)
$\mathrm{V}=\frac{\mathrm{K} \cdot \overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}$
Q. 118 (1)

x - axis component will cancel out
Q. 119 (4)

Since, dipole has net charge zero, so flux through sphere is zero with non-zero electric field at each point of sphere.
Q. 120 (4)
$\mathrm{E}=$ Field near sphere $=\frac{\mathrm{V}}{\mathrm{R}}=\frac{8000}{1 \times 10^{-2}}=8 \times 10^{5} \mathrm{~V} / \mathrm{m}$
$\therefore \quad$ Energy density $=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}=\frac{4 \pi \varepsilon_{0}}{8 \pi} \mathrm{E}^{2}$
$=\frac{8 \times 8 \times 10^{10}}{8 \pi \times 9 \times 10^{9}}=\frac{80}{9 \pi}=2.83 \mathrm{~J} / \mathrm{m}^{3}$.
Q. 121 (2)

The given diagram shows induction on sphere (metallic) due to metal plate.

Since distance between plate and -ve charge is less than that between plate and +ve charge. electric force acts on object towards plate.
Q. 122 (3)

Induction takes place on outer surface of sphere producing non-uniform charge distribution \& since external electric field can not enter the sphere, so interior remains charge free.
Q. 123 (4)

Given diagram shows the charge distribution on shells due to induction \& conservation of charge.
Q. 124 (3)

$E_{P}=\frac{q / 2}{2 A \varepsilon_{0}}+\frac{q / 2}{2 A \varepsilon_{0}}=\frac{q}{2 A \varepsilon_{0}}=50 \mathrm{~V} / \mathrm{m}$

Q. 125 (3)

Due to outer charge, since there is no charge induced inside the sphere, so no electric field is present inside the sphere.
Q. 126 (3)

Since field lines are always perpendicular to conductor surface field lines can' t enter into conductor so only option C is correct.
Q. 127 (1)

Car (A conductor) behaves as electric field shield in which a person remains free from shock.
Q. 128 (3)

Potential of $\mathrm{B}=$ Potintial at the centre of B
$=$ Potential due to induced charges + potential due to A.
$=0+(+\mathrm{ve})$
\therefore Potential of B is +ve .
Q. 129 (1)

Since electric field produced by charge is conservative, so work done in closed path is zero.
Q. 130 (1)

enclosed charge $=+\mathrm{ve} \Rightarrow$ flux through closed suface $=+$ ve.
\Rightarrow Due to induction the charge enclosed in the dotted becomes +ve
Q. 131 (1)

Let surface charge density on inner shell is σ_{1} Due to inner sphere, field at $A=\frac{1}{4} \times \frac{\sigma_{1}}{\varepsilon_{0}}=\frac{\sigma_{1}}{4 \varepsilon_{0}}$, and electrostatic pressure at point A. $=\frac{\sigma^{2}}{2 \varepsilon_{0}}+\frac{\sigma_{1} \sigma}{4 \varepsilon_{0}}$

Net force one hemisphere $=\left(\frac{\sigma^{2}}{2 \varepsilon_{0}}+\frac{\sigma_{1} \sigma}{4 \varepsilon_{0}}\right) \pi \mathrm{R}^{2}=0$

$$
\Rightarrow \quad \sigma^{2}+\frac{\sigma_{1} \sigma}{2}=0, \quad \text { or } \sigma_{1}=-2 \sigma
$$

Q. 132 (1)

$\mathrm{E}_{\mathrm{P}}=\frac{\mathrm{kq}}{\mathrm{r}^{2}}$
Q. 133 (1)
(1)
$\mathrm{E}=\frac{\mathrm{kq}}{\mathrm{r}^{2}}$

Q. 134 (1)

In a conductor given charge is distributed uniformly on the surface of sphere
Q. 135 (2)

Depends on body either conductor or non-conducting.
Q. 136 (3)

Potential of shell A is
$=\frac{k Q_{A}}{a}+\frac{k Q_{B}}{b}+\frac{k Q_{C}}{c}$

Now $Q_{A}=-4 \pi a^{2} \sigma$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{B}}=4 \pi \mathrm{~b}^{2} \sigma \\
& \mathrm{Q}_{\mathrm{C}}=-4 \pi \mathrm{c}^{2} \sigma \\
& \mathrm{k}=\frac{1}{4 \pi \varepsilon_{0}}
\end{aligned}
$$

Q. 137 (3)

Electric field at point $\mathrm{P}=\frac{\mathrm{k} 3 \mathrm{Q}}{\mathrm{r}^{2}}$

Q. 138 (2)

Given $\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}=0.108$
Now after connecting through a wire

Given $\frac{\mathrm{k}\left(\mathrm{q}_{1}-\mathrm{q}_{2}\right)^{2}}{4 \mathrm{r}^{2}}=0.036$
After solving equation (1) \& (2) will get the answer.
Q. 139 (4)

As we connect A and B through wire with C. Then all the charge on A and B move towards C so
$\mathrm{q}_{\mathrm{A}}=0, \mathrm{q}_{\mathrm{B}}=0$
$\mathrm{q}_{\mathrm{C}}=\mathrm{Q}+\mathrm{q}_{1}+\mathrm{q}_{2}$
Q. 140 (4)
$\mathrm{b}=2 \mathrm{a}, \mathrm{c}=3 \mathrm{a}, \mathrm{d}=4 \mathrm{a}$

$$
\frac{\mathrm{kq}}{3 \mathrm{a}}-\frac{\mathrm{kq}}{4 \mathrm{a}}+\frac{\mathrm{kq}^{\prime}}{3 \mathrm{a}}=0
$$

$q^{\prime}=-\frac{q}{4}$

$\operatorname{Now}_{\mathrm{A}}=\frac{\mathrm{kq}}{2 \mathrm{a}}-\frac{\mathrm{kq}}{4 \mathrm{a}}+\frac{\mathrm{kq}^{\prime}}{3 \mathrm{a}}=0$
$V_{A}=\frac{\mathrm{kq}}{6 \mathrm{a}}$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{C}}=\frac{\mathrm{kq}}{6 \mathrm{a}}-0=\frac{\mathrm{kq}}{6 \mathrm{a}}$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)

$$
\text { think } \mathrm{x} \text { is not small }
$$

Q. 2 (D)

$\mathrm{a}_{\text {con. }}=\mathrm{g}$
Q. 3 (B)

If we displaced q lightly then

$\because \mathrm{F}_{2}{ }^{1}>\mathrm{f}_{1}{ }^{1}$
\Rightarrow stable equilibrium
Q. 4 (C)

Given diagram shows :

The direction of $\mathrm{E}_{\text {net }}$ is along OC .
Q. 5 (B)

As we displaced upward $q E$ ' \uparrow
qE' > mg So particle move upward \Rightarrow Unstable equilibrium

(b) As we displace upward $\mathrm{qE}^{\prime} \downarrow$ $\mathrm{mg}>\mathrm{qE}$ particle comes at point P again
Now we displace down ward from $\mathrm{x}_{2} \mathrm{qE}{ }^{\prime}>\mathrm{mg}$ so particle comes at point P again
\Rightarrow stable equilibrium

Q. 6
(B)

$$
\mathrm{dF}=\mathrm{dqE}
$$

$$
\mathrm{dF}=\lambda^{\prime} \mathrm{Rd} \theta \frac{2 \mathrm{k} \lambda}{\mathrm{R}}
$$

$$
\mathrm{dF}=\frac{2 \mathrm{k} \lambda}{\mathrm{R}} \mathrm{Q} \frac{\mathrm{~d} \theta}{\pi}
$$

$\mathrm{F}_{\mathrm{net}}=\int_{0}^{\pi} \mathrm{dF} \sin \theta=\frac{2 \mathrm{k} \lambda \mathrm{Q}}{\pi \mathrm{R}} \int_{0}^{\pi} \sin \theta \mathrm{d} \theta$
$F=\frac{\lambda Q}{\pi^{2} \varepsilon_{0} R}$
Q. 7 (B)

At equilibrium
$\mathrm{f}=\mathrm{mg} \sin \theta$
Net τ is also 0
$\Rightarrow 2 \mathrm{qE} \sin \theta=\mathrm{f} . \mathrm{R}$.

Q. 8 (B)

$(0,0, L)$ is \perp to $p_{\text {net }}$
\Rightarrow component along z -direction is zero
Q. 9 (D)

$$
g_{\text {eff }}=\left[g^{2}+\left(\frac{q E}{m}\right)^{2}\right]^{1 / 2}
$$

$$
\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}_{\text {eff }}}}
$$

Q. 10 (B)

Net force on -Q charge $=2 \mathrm{~F} \cos \theta$
$\mathrm{a}=\frac{2 \mathrm{~F} \cos \theta}{\mathrm{~m}}$
$\mathrm{a}=\frac{2 \mathrm{kqQx}}{\mathrm{m}\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)}$
for $a_{\max } \frac{d a}{d x}=0$

which gives $\pm \frac{\mathrm{a}}{\sqrt{2}}=\mathrm{x}$
at $x \rightarrow \infty \quad a=0$

$$
x \rightarrow 0 \quad a=0
$$

Q. 11 (D)

E.f at (0, 0, z)
$\overrightarrow{\mathrm{E}}_{1}=\frac{\mathrm{kq}(\mathrm{zk}-\mathrm{a} \hat{\mathrm{i}})}{\left(\sqrt{\mathrm{a}^{2}+\mathrm{z}^{2}}\right)^{3}}, \quad \overrightarrow{\mathrm{E}}_{2}=\frac{\mathrm{kq}(\mathrm{zk}-\mathrm{a} \hat{\mathrm{i}})}{\left(\sqrt{\mathrm{a}^{2}+\mathrm{z}^{2}}\right)^{3}}$
$\overrightarrow{\mathrm{E}}_{3}=\frac{\mathrm{kq}(\mathrm{zk}+\mathrm{a} \hat{\mathrm{i}})}{\left(\sqrt{\mathrm{a}^{2}+\mathrm{z}^{2}}\right)^{3}}, \quad \overrightarrow{\mathrm{E}}_{4}=\frac{\mathrm{kq}(\mathrm{zk}+\mathrm{a}+\mathrm{a})}{\left(\sqrt{\mathrm{z}^{2}+\mathrm{a}^{2}}\right)^{3}}$
$\mathrm{E}_{\text {net }}=\frac{4 \mathrm{kqz} \hat{\mathrm{k}}}{\left(\sqrt{\mathrm{z}^{2}+\mathrm{a}^{2}}\right)^{3}}$
Magnitude $\mathrm{E}=\frac{4 \mathrm{kqz}}{\left(\sqrt{\left.\mathrm{z}^{2}+\mathrm{a}^{2}\right)^{3 / 2}}\right.}$
for maxima $\frac{d E}{d z}=0$
which gives $\mathrm{z}=\frac{\mathrm{L}}{2}$

Q. 12 (C)

$$
E=\frac{K q \cdot x}{\left(R^{2}+x^{2}\right)^{3 / 2}}
$$

For $x \gg R$
$\approx \frac{\mathrm{Kqx}}{\left(\mathrm{x}^{2}\right)^{3 / 2}} \approx \frac{\mathrm{Kq}}{\mathrm{x}^{2}}$

Q. 13 (B)

- ve charge may move opposite to line of force

Q. 14 C

$\phi=\int \vec{\varepsilon} \cdot \mathrm{d} \overrightarrow{\mathrm{S}}$
$=\left(\frac{\mathrm{N}}{\mathrm{C}}\right) \mathrm{m}^{2}$
$=$ volt -m

Q. 15 (C)

Electric flux due to outside charge will be zero. But elecric field will be due to all the charges.
Q. 16 (D)

(i) E.P.E. of charge +q at point A can be given as :
$\mathrm{E}_{\mathrm{A}}=\frac{-2 \mathrm{kq}^{2}}{\mathrm{a}}+\frac{-2 \mathrm{kq}^{2}}{\sqrt{3} \mathrm{a}}-\frac{\mathrm{kq}^{2}}{2 \mathrm{a}}$ \& E.P.E. of system
$\Rightarrow E_{S}=\frac{E_{A}+E_{B}+E_{C}+E_{D}+E_{E}+E_{F}}{2}$
where $\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{B}}=\mathrm{E}_{\mathrm{C}}=\mathrm{E}_{\mathrm{D}}=\mathrm{E}_{\mathrm{E}}=\mathrm{E}_{\mathrm{F}}$
$\therefore \quad \mathrm{E}_{\mathrm{S}}=3 \mathrm{E}_{\mathrm{A}}$
$\therefore \quad \mathrm{E}_{\mathrm{S}}=6\left(-\frac{\mathrm{kq}^{2}}{\mathrm{a}}\right)+6\left(\frac{\mathrm{kq}^{2}}{\mathrm{a} \sqrt{3}}\right)+3\left(-\frac{\mathrm{kq}^{2}}{2 \mathrm{a}}\right)$
$=\frac{\mathrm{q}^{2}}{\pi \in_{0} \mathrm{a}}\left[\frac{\sqrt{3}}{2}-\frac{15}{8}\right]$

Q. 17 (B)

$(\text { W.D })_{E}+(\text { W.D. })_{m g}=\Delta K$
$(\mathrm{qE} \ell \sin \theta)+(\ell-\ell \cos \theta) \mathrm{mg}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{q}\left(\frac{\mathrm{mg}}{\mathrm{R}}\right) \frac{\ell}{\sqrt{2}}+\mathrm{mg} \ell\left[1-\frac{1}{\sqrt{2}}\right]=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{v}=\sqrt{2 \mathrm{~g} \ell}, \omega=\frac{\mathrm{v}}{\mathrm{R}}=\sqrt{\frac{2 \mathrm{~g}}{\ell}}$
Q. 18 (B)

$\mathrm{U}=\frac{\mathrm{Kq}^{2}}{\mathrm{r}^{2}}+\frac{\mathrm{Kq}^{2}}{\mathrm{r}^{2}}+\frac{K q^{2}}{\mathrm{r}^{2}}+\frac{K q^{2}}{\mathrm{r}^{2}}$
$r^{2}=x^{2}+\frac{a^{2}}{2}$
$\mathrm{U}=\frac{4 \mathrm{kq}^{2}}{\mathrm{x}^{2}+\mathrm{a}^{2} / 2}$

Q. 19 (B)

Either y is fixed or not E is conserved but when y is fixed $\mathrm{F}_{\text {net }} \neq 0$
$\Rightarrow \mathrm{P}$ not conserved
when y is free $F_{\text {net }}=0$
$\Rightarrow \mathrm{P}=$ conserved
Q. 20 (A)

m
m

After long time y will move with velocity u and $v_{x}=0$ becouse momentum is conserved
Q. 21 (C)

Energy at Point $P=\frac{\lambda q}{4 \varepsilon_{0}}+q\left(\frac{K \lambda 2 \pi R}{2 R}\right)$

$$
=\frac{\lambda \mathrm{q}}{4 \varepsilon_{0}}+\frac{\mathrm{q} \lambda}{4 \varepsilon_{0}}=\frac{\mathrm{q} \lambda}{2 \varepsilon_{0}}
$$

Energy at point $0=\frac{\mathrm{qk} \lambda(2 \pi \mathrm{R})}{\mathrm{R}}=\frac{\mathrm{q} \lambda}{2 \varepsilon_{0}}$ i.e. particle will reach just point 0 .
Q. 22 (A)

Energy conservation

between point P \& A

$$
\begin{aligned}
& \Rightarrow \mathrm{qv}+\frac{1}{2} \mathrm{mv}^{2}=4 \mathrm{qv} \\
& \frac{1}{2} \mathrm{mv}^{2}=3 \mathrm{qV} \Rightarrow \mathrm{v}=\sqrt{\frac{6 q v}{m}}
\end{aligned}
$$

Q. 23 (B)

from AME about point 0
$\Rightarrow \operatorname{mvd}=\mathrm{mvR}$
$\mathrm{u}=\frac{\mathrm{vd}}{\mathrm{R}}$
...(1)
from E.C. $\frac{1}{2} m v^{2}=\frac{1}{2} m u^{2}+\frac{\mathrm{kq}_{1} q_{2}}{\mathrm{R}}$
..(2)
from eq. (1) and (2)
$\mathrm{v}=2 \sqrt{\frac{2}{3}} \quad \mathrm{~m} / \mathrm{sec}$.
Q. 24 (B) from E.C. $=\frac{E Q q}{r}=\frac{E Q q}{2 r}+\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \frac{\mathrm{kQq}}{2 \mathrm{r}}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{v}=\sqrt{\frac{\mathrm{KQq}}{\mathrm{mr}}}$
Impulse $=m v=\sqrt{\frac{\mathrm{kQqm}}{\mathrm{r}}}$
Q. 25 (C)

Let the two charges at A \& B are separated by distance 2 r .
Let us consider a general point ' M ' at distance
' x ' from point ' A ' in figure.
$\therefore \quad \mathrm{V}_{\mathrm{m}}=$ Potential at $\mathrm{M}=\frac{\mathrm{kQ}}{\mathrm{x}}+\frac{\mathrm{kQ}}{(2 \mathrm{r}-\mathrm{x})}$
$\therefore \quad V_{m}=k Q\left[\frac{1}{x}+\frac{1}{(2 r-x)}\right]=k Q\left[\frac{(2 r)}{x(2 r-x)}\right]$
For V_{m} to be max. or $\min : \frac{\mathrm{dV}_{\mathrm{m}}}{\mathrm{dx}}=0$
or $\frac{d}{d x}\left[k Q \frac{2 r}{x(2 r-x)}\right]=0$
$\therefore \frac{\mathrm{x}(2 \mathrm{r}-\mathrm{x})(0)-\mathrm{kQ}(2 \mathrm{r})[2 \mathrm{r}-2 \mathrm{x}]}{[\mathrm{x}(2 \mathrm{r}-\mathrm{x})]^{2}}=0$
$\therefore \quad \mathrm{x}=\mathrm{r}$
$\& \quad A t \mathrm{x}=\mathrm{r}, \frac{\mathrm{d}^{2} \mathrm{~V}_{\mathrm{m}}}{\mathrm{dx}^{2}}>0 \quad \therefore \mathrm{x}=\mathrm{r}$ is min.
Hence potential continuously decreases from A to P and then increases

Q. 26 (C)

Let -Q charge is placed at $(0, \mathrm{y}, \mathrm{z})$
Now total potential energy of the system
$\mathrm{U}=\frac{K \mathrm{Q}^{2}}{\mathrm{a}}+\frac{\mathrm{KQ}(-\mathrm{Q})}{\mathrm{r}}+\frac{\mathrm{KQ}(-\mathrm{Q})}{\mathrm{r}}=0$
$r=\sqrt{\frac{a^{2}}{4}+y^{2}+z^{2}}$
According to problem $\mathrm{U}=0$

$$
\begin{aligned}
& \frac{K Q^{2}}{a}=\frac{K Q^{2}}{\sqrt{\frac{a^{2}}{4}+y^{2}+z^{2}}}+\frac{K Q Q^{2}}{\sqrt{\frac{a^{2}}{4}+y^{2}+z^{2}}} \\
& \frac{a^{2}}{4}+y^{2}+z^{2}=4 a^{2} \\
& y^{2}+z^{2}=\frac{15 a^{2}}{4}
\end{aligned}
$$

Q. 27 (B)

Energy conservation between surface and point C

$\Rightarrow \mathrm{q}\left(\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{s}}\right)=\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \mathrm{q}\left(\frac{3 \mathrm{kq}}{2 \mathrm{R}}-\frac{\mathrm{kq}}{\mathrm{R}}\right)=\frac{1}{2} \mathrm{mv}^{2}, \quad \mathrm{u}=\frac{\mathrm{q}}{\left(4 \pi \varepsilon_{0} \mathrm{mR}\right)^{1 / 2}}$
Q. 28 (B)
$\mathrm{qV}=\frac{1}{2} \mathrm{mv}^{2}=\mathrm{K} . \mathrm{E} \Rightarrow \mathrm{V}=\sqrt{\frac{2 \mathrm{qv}}{\mathrm{m}}}$
Q. 29 (B)

Movement is parallel to x -axis
\therefore w.d. by 2λ is zero.

$$
\text { (W.D.) }{ }_{\mathrm{AB}}=\int_{\sqrt{2}}^{1} \overrightarrow{\mathrm{E}} . \mathrm{dr}
$$

$=\int_{\sqrt{2}}^{1} \frac{2 \mathrm{k}(3 \lambda)}{\mathrm{r}} \mathrm{dr}=3 \times 2 \mathrm{k} \lambda \ln \left(\frac{1}{\sqrt{2}}\right)=3 \mathrm{k} \lambda \ln 2$
(W.D.) due to wire λ is $k \lambda \ln (2)=\frac{\lambda \ell_{\mathrm{n}}(2)}{\pi \varepsilon_{0}}$
Q. 30 (C)
$E=-\frac{d v}{d x}$
Q. 31 (B)

in $y, E_{y}=0$
$\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{0}=\frac{\mathrm{V}}{\mathrm{X}_{0}}$

Q. 32 (D)
$E x=\frac{-\partial v}{\partial x}$
check slope
Q. 33 (A)

$\tau_{\text {net }}=\mathrm{qE} 2 \sin \theta+\mathrm{qE} \sin \theta=3 \mathrm{qE} \sin \theta$
$\tau_{\text {net }}=3 \mathrm{qE} \theta$
$\mathrm{W}=\sqrt{\frac{\mathrm{K}_{\text {shm }}}{\mathrm{I}}}=\sqrt{\frac{3 \times 1 \times 10^{-6} \times 20 \times 10^{-3}}{6}}$
$=\sqrt{\frac{1}{100}}=0.1 \mathrm{rad} / \mathrm{sec}$
Q. 34 (B)

Potential energy $=-\vec{P}_{1} \cdot \overrightarrow{\mathrm{E}}$; where, $\overrightarrow{\mathrm{E}}=$ Electric field due to dipole P_{2}.

$$
\begin{aligned}
\therefore \quad \mathrm{U}_{12} & =-\left(\mathrm{P}_{1}\right)\left(\mathrm{E}_{2}\right) \\
\mathrm{U}_{12} & =-\left(\mathrm{P}_{1}\right)\left(\frac{2 \mathrm{KP}_{2} \cos \theta}{\mathrm{r}^{3}}\right)
\end{aligned}
$$

Q. 35 (A)

$$
\begin{aligned}
& \lambda=\frac{\mathrm{q}}{\pi \mathrm{R} / 2}=\frac{2 \mathrm{q}}{\pi \mathrm{R}} \\
& \mathrm{dP}_{1}=\int_{0}^{\pi / 2} \mathrm{dP} \cos \theta
\end{aligned}
$$

$=\int_{0}^{\pi / 2}(\lambda R d \theta) R \cos \theta$
$=\lambda \mathrm{R}^{2} \int_{0}^{\pi / 2} \cos \theta \mathrm{~d} \theta=\lambda \mathrm{R}^{2}[\sin \theta]_{0}^{\pi / 2}$
$=\lambda R^{2} \cdot 1=\frac{2 q}{\pi R} \cdot R^{2}=\frac{2 q R}{\pi}$

$$
\begin{aligned}
& \mathrm{dP}_{2}=\int_{0}^{\pi / 2} \mathrm{dP} \sin \theta=\frac{2 \mathrm{qR}}{\pi} \\
& \mathrm{P}=\frac{2 \sqrt{2} \mathrm{qR}}{\pi}
\end{aligned}
$$

Q. 36 (D)
$F=\left|P \frac{d E}{d r}\right|$
and $\frac{d E}{d r}=0$ at $r=\frac{R}{\sqrt{2}}$
$\Rightarrow \mathrm{F}=0$
Q. 37 (B)

$$
\begin{aligned}
& \mathrm{d} \tau=\frac{2 \sigma}{2 \varepsilon_{0}} \cdot \lambda \mathrm{xdx} \\
& =\frac{\sigma}{\varepsilon_{0}} \lambda \sin \theta \int_{0}^{1} \mathrm{x} \cdot \mathrm{dx}
\end{aligned}
$$

$$
=\frac{\sigma \lambda l^{2} \sin \theta}{2 \varepsilon_{0}}
$$

Q. 38 (A)

Q. 39 (D)
Q. 40 (B)

$\mathrm{d} \cos \phi=\mathrm{r}$
$\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{C}}=\frac{\mathrm{kp}}{\mathrm{d}^{2}}=\frac{\mathrm{kp} \cos ^{2} \phi}{\mathrm{r}^{2}}$

Q. 41 (A)

Balancing occur only when -ve charge occur in inside conductor.
$P_{\text {elec. }}=\frac{\sigma^{2}}{2 \varepsilon_{0}}$
$F=\frac{\sigma^{2}}{2 \varepsilon_{0}} A$

at equilibrium
$\frac{\sigma^{2}}{2 \varepsilon_{0}}\left(4 \pi \mathrm{R}^{2}\right)=\frac{\sigma^{2}}{2 \varepsilon_{0}}\left(4 \pi \frac{\mathrm{R}^{2}}{4}\right)$
$\sigma^{\prime}=2 \sigma(-\mathrm{ve})$
Q. 42 (C)
(W.D.) $)_{\text {ext }}=U_{f}-U_{i}$
$\mathrm{U}_{\mathrm{i}}=0($ at $\infty)$
Self energy of a conducting sphere $=\frac{\mathrm{kQ}^{2}}{2 \mathrm{R}}$

$$
\Rightarrow \mathrm{U}_{\mathrm{f}}=\frac{\mathrm{kq}^{2}}{2 \mathrm{~b}}-\frac{\mathrm{kq}^{2}}{2 \mathrm{a}} \Rightarrow \text { W.D. }=\frac{\mathrm{kq}^{2}}{2 \mathrm{~b}}-\frac{\mathrm{kq}^{2}}{2 \mathrm{a}}
$$

Q. 43 (D)

Electric field inside the conductor will be zero. Either external electric field is present or not.
Hence potential at every point must be same.
Charge distribution depends on external field and σ
$\propto \frac{1}{\mathrm{r}}$ (when no electric field)

JEE-ADVANCED
 MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (B,D)

(i) From diagram, force on Q at general position x , is given by
$F_{\text {net }}=-2 F \cos \theta=-\frac{k Q q x}{\left(a^{2}+x^{2}\right)^{3 / 2}}$ (Towards origin)
(ii) When charge moves from $(2 \mathrm{a}, 0)$ to origin O , force keeps on acting on Q and becomes zero at O .
\therefore Velocity of Q is max. at O .
(iii) \because Motion is SHM for very small displacements. \& 2a is not very small os motion is periodic but not SHM.
Q. 2 (C,D)

If we slightly displaced $-Q$ charge towards B thus force on -Q due to B increses

$\Rightarrow-\mathrm{Q}$ moves towards BC (unstable equillibrium)
If we displaced to wards y axis

(stable equilibrium)

Q. 3 (A,D)

Q. 44 (D)

Q. 4 (A,B,C)

$\mathrm{V}_{\mathrm{p}}=\frac{\mathrm{KQ}}{\mathrm{x}+\mathrm{r}}-\frac{\mathrm{KQ} / 4}{\mathrm{r}}=0$
$\Rightarrow \frac{1}{\mathrm{x}+\mathrm{r}}-\frac{1}{4 \mathrm{r}}=0 \Rightarrow 4 \mathrm{r}-\mathrm{x}-\mathrm{r}=0$
$r=\frac{X}{3}$
$v_{p}=\frac{-K Q / 4}{r}+\frac{K Q}{(x-r)}=0$
$\Rightarrow-\frac{1}{4 r}+\frac{1}{x-r}=0 \Rightarrow r=\frac{x}{5}$

$E p=\frac{K Q}{(x+r)^{2}}-\frac{K(Q / 4)}{r^{2}}=0$
$r>0$
Q. 5 (A,B,C,D)

As velocity along y-axis remains unchanged, so there should not be any electric field along y axis.

As velocity along x axis is increasing, so force on the electron must be along $+x$ direction, so electric field must be towards -x direction.
So force on the electron is :
$\mathrm{F}=\mathrm{qE}=\mathrm{e} \mathrm{E}$
acceleration, $a=\frac{e E}{m}$ towards $+x$ direction
From A \rightarrow B
$S_{y}=u_{y} t$
or $\mathrm{d}=\mathrm{vt} \Rightarrow \therefore \mathrm{t}_{\mathrm{A} \rightarrow \mathrm{B}}=\frac{\mathrm{d}}{\mathrm{V}}$
From : A \rightarrow B

$$
S_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}
$$

or $\quad \mathrm{a}=0+\frac{1}{2}\left(\frac{\mathrm{eE}}{\mathrm{m}}\right)\left(\frac{\mathrm{d}}{\mathrm{V}}\right)^{2}$
$\Rightarrow \mathrm{E}=\frac{2 \mathrm{amV}^{2}}{\mathrm{ed}^{2}}$ toward-x direction
(A) Velocity along x axis at B :

From A \rightarrow B
$\mathrm{V}_{\mathrm{x}}=\mathrm{u}_{\mathrm{x}}+\mathrm{a}_{\mathrm{x}} \mathrm{t}$
or $\quad V_{x}=0+\left(\frac{e E}{m}\right)\left(\frac{d}{V}\right)$
$\Rightarrow \mathrm{V}_{\mathrm{x}}=\frac{\mathrm{eEd}}{\mathrm{mV}}$
where, $\mathrm{E}=\frac{2 \mathrm{amv}^{2}}{\mathrm{ed}^{2}} \Rightarrow \quad \therefore \mathrm{~V}_{\mathrm{x}}=\frac{2 \mathrm{aV}}{\mathrm{d}}$
(D) Net velocity vector at B
$\vec{V}_{B}=V_{x} \hat{i}+V_{y} \hat{j}$
$\vec{V}_{B}=\frac{2 a V}{d} \hat{i}+V \hat{j}$
(B) Rate of work done at $\mathrm{B}=$ Power $=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{V}}_{\mathrm{B}}$

$$
\begin{aligned}
& =(\mathrm{eE} \hat{\mathrm{i}}) \cdot\left(\frac{2 \mathrm{aV}}{\mathrm{~d}} \hat{\mathrm{i}}+\mathrm{V} \hat{\mathrm{j}}\right) \\
& =\mathrm{eE}\left(\frac{2 \mathrm{aV}}{\mathrm{~d}}\right) ; \text { where, } \mathrm{E}=\frac{2 \mathrm{amV}^{2}}{\mathrm{ed}^{2}} \\
& \Rightarrow \therefore P=\frac{4 \mathrm{ma}^{2} \mathrm{~V}^{3}}{\mathrm{~d}^{3}}
\end{aligned}
$$

(C) Rate of work done at A:
$P_{A}=\vec{F} \cdot \vec{V}_{A}$

$$
=(e \vec{E} \hat{i}) \cdot(V \hat{\mathbf{j}})=0
$$

Q. 6 (B,C)

$\therefore \quad \mathrm{mg}=\mathrm{f}_{\text {air }}$
(ii)

$\therefore \mathrm{QE}=\mathrm{mg}+\mathrm{f}_{\text {air }}=2 \mathrm{mg}$
\therefore charge is -ve , so electric field ' E ' is directed downwards.

$$
\& \mathrm{QE}=2 \mathrm{mg}
$$

$\therefore \mathrm{E}=\frac{2 \mathrm{mg}}{\mathrm{Q}}=\frac{2 \times 1.6 \times 10^{-18} \times 10}{9.6 \times 10^{-19}}=\frac{1}{3} \times 10^{2} \mathrm{NC}^{-1}$

Q. 7 (A,C)

In constant force field path may be straight line Fnet \rightarrow
$\mathrm{u} \rightarrow$ or Parabola
Q. 8 (A,C)
(i) At any point P inside the sphere, electric field
$\Rightarrow \mathrm{E}_{\mathrm{P}}=\frac{\mathrm{kQr}}{\mathrm{R}^{3}}$.
$\therefore \quad \mathrm{E}_{\mathrm{P}}$ increases as r increases.
(ii) At any point M outside the sphere, $E_{M}=\frac{k Q}{r^{2}}$
$\therefore \quad \mathrm{E}_{\mathrm{M}}$ decreases as r increases.
Q. 9 (A,C)

Q. 10 (A,D)

AD
Flux due to charge which is outside will be zero.
$\oint \vec{\varepsilon} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}}$
electric field due to all the charges.
Q. 11 (A,B,C)
$\oint \vec{\varepsilon} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{q}_{\mathrm{in}}}{\varepsilon_{0}}$

Flux electric field due to charge lie inside or out side the surface. But ϕ is only due to charge lie inside the surface.
Q. 12 (A,B,C)
$\mathrm{E}=100 \mathrm{r}$
$\oint \vec{\varepsilon} \cdot d \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}}$
$\varepsilon \mathrm{dA} \cos 180^{\circ}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}}$

$\Rightarrow \mathrm{q}_{\mathrm{in}}=-\mathrm{ve}$
$\left|q_{\text {in }}\right|=\operatorname{EdA} \varepsilon_{0}=3 \times 10^{-13} \mathrm{C}$
Q. 13 (A,C)
Q. 14 (A,B,C,D)
$\frac{\mathrm{kQ}}{(\mathrm{r}+5 \mathrm{~cm})}=100 \mathrm{~V} \quad \& \frac{\mathrm{kQ}}{(\mathrm{r}+10 \mathrm{~cm})}=75 \mathrm{~V}$
$\therefore \quad \mathrm{Q}=\frac{5}{3} \times 10^{-9} \mathrm{C}, \mathrm{r}=10 \mathrm{~cm}$
$\therefore \quad \mathrm{V}_{\text {surface }}=\frac{\mathrm{kQ}}{2}=150 \mathrm{~V}$
$\mathrm{E}_{\text {surface }}=\frac{\mathrm{kQ}}{\mathrm{r}^{2}}=1500 \mathrm{~V} / \mathrm{m}$

$$
\mathrm{V}_{\text {centre }}=\frac{3}{2} \mathrm{~V}_{\text {surface }}=\frac{3}{2} \times 150=225 \mathrm{~V}
$$

Q. 15 (C,D)
(A) Charging by conduction has charge distribution depending on size of bodies.
(B) Charge is invariant with velocity.
(C) Charge requires mass for existence
(D) Repulsion shows charge of both bodies because attraction can be there between charged and uncharged body.

Q. 16 (B,C)

from given data $\mathrm{E}_{\mathrm{x}}=\frac{160}{4} \mathrm{~V} / \mathrm{cm}=40 \mathrm{~V} / \mathrm{cm}$
but $\mathrm{E}=\sqrt{\mathrm{E}_{\mathrm{x}}^{2}+\mathrm{E}_{\mathrm{y}}^{2}+\mathrm{E}_{\mathrm{z}}^{2}} \Rightarrow \mathrm{E}$ may be equal or greater than $40 \mathrm{~V} / \mathrm{cm}$ ie.
As shown, there can be electric fields \perp to x axis, which will not affect the electric potential difference but can increase net field.
Q. 17 (A.B,C,D)
(A) $\mathrm{V}=\frac{\mathrm{KQ}}{\mathrm{r}}=0 \mathrm{~b} / \mathrm{wz} \theta=0$
(B) Depends on distribution of charge .
(C) Depends on distribution of charge .
(D) $\mathrm{F}_{\text {net }}$ is zero but $\tau_{\text {net }}$ may be non zero
Q. 18 (B,D)

$\mathrm{v}_{\mathrm{c}}=\frac{4 \mathrm{KQ}}{\mathrm{r}}$
At Z axis horizontal component of E cancelled but vertical is added.
$E_{A}>E_{B}$
Electric field lines from higher potential to lower potential.
$\mathrm{V}_{\mathrm{B}}>\mathrm{V}_{\mathrm{A}}$
Q. 20 (B,C)

To reduce potential energy
$F=-\frac{d U}{d x}$

$\frac{16 Q^{2} K}{x^{2}}=\frac{4 Q^{2} K}{(9-x)^{2}}$
$2(9-x)=x$
$18-2 x=x$
$\mathrm{x}=6 \mathrm{~cm}$
Q. 21 (A,C)

$\mathrm{F}=\mathrm{eE} \rightarrow$
k.E. $=\mathrm{e}(7-3)=4 \mathrm{ev}$
Q. 22 (B,C,D)
$m A V+m B V=m A V 1$
E.C $\frac{1}{2} \mathrm{~m}_{\mathrm{A}} \mathrm{V}_{2}=\frac{1}{2}\left(\mathrm{~m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right) \mathrm{V}_{2}+\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{r}_{\text {min }}}$

Momentum is concerved because $\mathrm{F}_{\text {net }}=0$
Q. 23 (A,C)

Q. 24 (A,C)
Q. 19 (A,D)
higher density \Rightarrow Higher E
Q. 29 (A,C,D)

In all orientations, dipole experiences force, but does not experience torque if dipole has its dipole moment along or opposite to ELOF.
Dipole can never be in stable equilibrium \& work done in moving dipole along an EPS of point charge Q will be zero.
Q. 25 (A,B,D)

Dimension theory
Q. 26 (A,B,D)
$\vec{\tau}=\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{E}}$
$=(2 \hat{i}+3 \hat{j}) \times(3 \hat{i}+2 \hat{k}) \times 10^{-6} \times 10^{5}$
$=(0.6 \hat{\mathrm{i}}-0.4 \hat{\mathrm{j}}-0.9 \hat{\mathrm{k}})$
P.E. $=-\overrightarrow{\mathrm{P}} . \overrightarrow{\mathrm{E}}$

Max P.E. $=|\overrightarrow{\mathrm{P}}||\overrightarrow{\mathrm{E}}|$
Q. 27 (A,D)

$\mathrm{P}_{\text {net }}^{2}=\mathrm{P}^{2}+\mathrm{P}^{2}+2 \mathrm{P}^{2} \operatorname{Cos} 60$
$=\sqrt{3} \mathrm{qL}$
Q. 28 (B,C)
F net $=2 F \sin \theta$
$=2 . \frac{\mathrm{kqQ}}{\left(\mathrm{r}^{2}+\mathrm{d}^{2}\right)} \times \frac{\mathrm{d}}{\left(\mathrm{r}^{2}+\mathrm{d}^{2}\right)^{1 / 2}}=\frac{2 \times \mathrm{kqQ}}{\mathrm{r}^{3}}=\frac{\mathrm{KPQ}}{\mathrm{r}^{3}}$

(i) Due to earthing

Let total charge on B is q.
$V_{B}=0 \quad \therefore \frac{k q}{b}+\frac{k Q}{b}=0$ or $q=-Q$.
(ii) \therefore All charge $\mathrm{q}=-\mathrm{Q}$
appears on inner surface of B due to induction
\Rightarrow Charge on outer surface of $B=0$
\Rightarrow Field between A and B due to $B=0$
Field between A and B due to $A \neq 0$
Net field between A and $\mathrm{B} \neq 0$.
Q. 30 (A,C,D)

$$
\sigma=\frac{2 \mathrm{Q}}{4 \pi \mathrm{R}^{2}}
$$

$\sigma=\frac{\mathrm{Q}}{2 \pi \mathrm{R}^{2}}$
ε_{A} only due to inside charge
$\propto \frac{1}{\mathrm{r}^{2}}$
ε_{B} due to charge (inside + outside)

Q. 31 (A,B)

In conductor given charge inside on its outer surface.
$\sigma \propto \frac{1}{\mathrm{r}_{\mathrm{c}}} \Rightarrow$ Potential will be same

Electric field near the surface $=\frac{\sigma}{\varepsilon_{0}}$

Where $\sigma=$ Local charge density $\sigma \propto \frac{1}{\mathrm{r}}$
Q. 32 (C)

For 30 C charge, angle $\in\left(5^{\circ}, 9^{\circ}\right) \Rightarrow 7^{\circ}$

Q. 33 (C)

In (iii) most of the positive charge with run away to the metal knob. So due to less charge on the leaves, the leaves will come closer than before.

Q. 34 (A)

Applying torque balance about hinge point O .

$$
\frac{\mathrm{kq}^{2}}{\left(2 \ell \sin \frac{\theta}{2}\right)^{2}}\left(\ell \cos \frac{\theta}{2}\right)=\mathrm{mg}\left(\frac{\ell}{2}\right) \sin \frac{\theta}{2}
$$

for small $\theta, \sin \frac{\theta}{2} \rightarrow \frac{\theta}{2}, \cos \frac{\theta}{2} \rightarrow 1$

$$
\therefore \quad \theta=\sqrt{\frac{4 \mathrm{kq}^{2}}{\mathrm{mg} \ell^{2}}}
$$

Q. 35 (C)

$$
\begin{aligned}
\because \phi & =\frac{\mathrm{Q}}{\epsilon_{0}} \\
\therefore & =2 \times 10^{5} \times 8.85 \times 10^{-12} \mathrm{C} \\
& =1.77 \mu \mathrm{C}
\end{aligned}
$$

Q. 36 (B)

$$
\begin{aligned}
& \frac{\left(1.77 \times 10^{-6}+\mathrm{Q}_{\mathrm{A}}\right)}{\epsilon_{0}}=-4 \times 10^{5} \\
& \Rightarrow \mathrm{Q}_{\mathrm{A}}=-5.31 \times 10^{-6} \mathrm{C}
\end{aligned}
$$

Q. 37 (D)

For all values of r, flux ϕ is non-zero i.e. no Gaussian sphere of radius r is possible in which net enclosed charge is zero.
Q. 38 (B)

The inner sphere is grounded, hence its potential is zero. The net charge on isolated outer sphere is zero. Let the charge on inner sphere be q'.
\therefore Potential at centre of inner sphere is

Q. 39 (C)

The region in between conducting sphere and shell is shielded from charges on and outside the outer surface of shell. Hence, charge distribution on surface of sphere and inner surface of shell is uniform.
The distribution of induced charge on outer surface of shell depends only on point charge q , hence is nonuniform. The charge distribution on all surfaces, is as shown.

Q. 40 (A)

The electric field at B is $=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}}{4 \mathrm{x}^{2}}$ towards left.
$\therefore \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{A}}=-\int_{2 \mathrm{a}}^{\mathrm{a}} \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{4 \mathrm{x}^{2}} \mathrm{dx}=\frac{1}{32 \pi \varepsilon_{\mathrm{o}}} \cdot \frac{\mathrm{q}}{\mathrm{a}}$
Q. 41 (A) p, q (B) p, q (C) p, q, s (D) r,s

In situation A, B and C, shells I and II are not at same potential. Hence charge shall flow from sphere I to sphere II till both acquire same potential.
If charge flows, the potential energy of system decreases and heat is produced.
In situations A and B charges shall divide in some fixed ratio, but in situation C complete charge shall be transferred to shell II for potential of shell I and II to be same.
$\therefore \quad(\mathrm{A}) \rightarrow \mathrm{p}, \mathrm{q},(\mathrm{B}) \rightarrow \mathrm{p}, \mathrm{q},(\mathrm{C}) \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{s}$
In situation D , both the shells are at same potential, hence no charge flows through connecting wire.
\therefore (D) $\rightarrow \mathrm{r}, \mathrm{s}$
Q. 42 (A) p (B) r,s (C) p,q(D)r,s

The resultant dipole moment has magnitude $\sqrt{(\sqrt{3} \mathrm{P})^{2}+\mathrm{P}^{2}}=2 \mathrm{P}$ at an angle $\theta=\tan ^{-1} \frac{\sqrt{3} \mathrm{P}}{\mathrm{P}}$ $=60^{\circ}$
with positive x direction.

Diameter AB is along net dipole moment and diameter CD is normal to net dipole moment.
$\therefore \quad$ Potential at $\mathrm{A}\left(\frac{\mathrm{R}}{2}, \frac{\sqrt{3} \mathrm{R}}{2}\right)$ is maximum
Potential is zero at $C\left(\frac{\sqrt{3} \mathrm{R}}{2},-\frac{R}{2}\right)$ and D $\left(-\frac{\sqrt{3} \mathrm{R}}{2}, \frac{\mathrm{R}}{2}\right)$
Magnitude of electric field is $\frac{1}{4 \pi \varepsilon_{0}} \frac{4 p}{R^{3}}$ at A
$\left(\frac{\mathrm{R}}{2}, \frac{\sqrt{3} \mathrm{R}}{2}\right)$ and $\mathrm{B}\left(-\frac{\mathrm{R}}{2},-\frac{\sqrt{3} \mathrm{R}}{2}\right)$
Magnitude of electric field is $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{p}}{\mathrm{R}^{3}}$ at C $\left(\frac{\sqrt{3} \mathrm{R}}{2},-\frac{\mathrm{R}}{2}\right)$ and $\mathrm{D}\left(-\frac{\sqrt{3} \mathrm{R}}{2}, \frac{\mathrm{R}}{2}\right)$

NUMERICAL VALUE BASED

Q. 1 [40]

Electric field on particle
$\mathrm{E}=\mathrm{E}=\frac{-\Delta \mathrm{V}}{\Delta \mathrm{x}}=\mathrm{E}=\frac{-[250-(-250)]}{20 \times 10^{-2}}=-$

2500 V/m

Acceleration of charge particle
$\frac{\mathrm{qE}}{\mathrm{m}}=\frac{1.6 \times 10^{-19} \times 2500}{16 \times 10^{-31}}=2500 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
thus time taken $=\sqrt{\frac{2 \times 5}{\mathrm{a}}}$
$\left\{S=\frac{1}{2}\right.$
$a t^{2}$)
$=\sqrt{\frac{2 \times 20 \times 10^{-2}}{2500 \times 10^{11}}}=4 \times 10^{-8} \mathrm{sec} .=40 \mathrm{nS}$

Q. 2 [96]

$\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$
$\sigma=\frac{Q}{4 \pi r^{2}}$

$\frac{\sigma^{2}}{2 \epsilon_{0}}+\mathrm{p}-\mathrm{p}_{0}=\frac{4 \mathrm{~s}}{\mathrm{r}}$
$\mathrm{p}-\mathrm{p}_{0}=0$
$\Rightarrow \quad \frac{1}{2 \varepsilon_{0}} \cdot \frac{\mathrm{Q}^{2}}{16 \pi^{2} r^{4}}=\frac{4 \mathrm{~s}}{\mathrm{r}}$
$\Rightarrow \quad \frac{1}{2 \varepsilon_{0}} \cdot \frac{n \pi \varepsilon_{0} s}{16 \pi^{2} r^{3}} \cdot \frac{4}{3} \pi r^{3}=4 \mathrm{~s}$;
$\mathrm{n}=96$
Q. 3 [6]
$\frac{\lambda}{2 \pi \epsilon_{0} r}=E_{\text {break }}$
$r=\frac{\lambda}{2 \pi \in_{0} \mathrm{E}_{\text {break }}}$
$=\frac{10^{-3}}{2 \times 3.14 \times 8.85 \times 10^{-12} \times 3 \times 10^{6}}$
$=\frac{1}{2 \times 3.14 \times 8.85} \times 10^{3}$
$=5.99 \mathrm{~m} \approx 6 \mathrm{~m}$ Ans.
[3]
Along z axis $\overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=0$
Along x axis $\quad \vec{E}=$ cont.

$$
\therefore \phi_{\mathrm{x}}=0
$$

for $\mathrm{y}=0$
$\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\int 3(0+2) \hat{\mathrm{j}} \cdot \mathrm{dA}(-\hat{\mathrm{j}})=6 \int \mathrm{dA}=-6$
for $\mathrm{y}=1$
$\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\int 3(1+2) \hat{\mathrm{j}} \cdot \mathrm{dA}(\hat{\mathrm{j}})=9 \int \mathrm{dA}=9$
$\therefore \phi_{\text {net }}=+3 \in_{0}$ Ans.
Q. 5 [4]
$\mathrm{W}_{\mathrm{A} \rightarrow \mathrm{B}}^{\mathrm{ex.}}=\mathrm{W}=\mathrm{U}_{\mathrm{B}}-\mathrm{U}_{\mathrm{A}}$

$W=U_{B}-\frac{Q^{2}}{4 \pi \varepsilon_{0} \sqrt{5} R}$
At new position

$$
\mathrm{U}_{\mathrm{B}}^{\prime}=\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{0} \sqrt{5} \mathrm{R}}
$$

Work done $=\mathrm{U}_{\mathrm{B}}^{\prime}=\mathrm{U}_{\mathrm{B}}=-\mathrm{W}=-4 \mathrm{~J}$
Q. 6 [9]

In uniform electric in vertical direction if (+ve) charge feels extra acceleration in downward direction, then (-ve) charge will feel acceleration in upward direction.

$$
\begin{aligned}
& \mathrm{v}_{\text {uncharged }}=5 \sqrt{5} \mathrm{~m} / \mathrm{sec} \\
& \mathrm{v}=0, \mathrm{~h}=\text { height } \\
& \mathrm{v}^{2}-\mathrm{u}^{2}=-2(\mathrm{~g}) \mathrm{h} \\
& -(5 \sqrt{5})^{2}=-2 \mathrm{gh} \\
& \mathrm{u}_{\mathrm{q}+}=13 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{v}=0, \mathrm{~h}=\mathrm{h}
\end{aligned} \mathrm{v}^{2}-\mathrm{u}^{2}=2\left(\mathrm{~g}+\frac{\mathrm{F}_{\mathrm{E}}}{\mathrm{~m}}\right) \mathrm{h} .
$$

Q. 7 [6]

$\mathrm{F}_{\mathrm{AB}}=\frac{a}{l}(0+l) \times \lambda l=\mathrm{a} \lambda l$
$\rightarrow \mathrm{F}_{\mathrm{CD}}=\frac{a}{l}(l+l) \times \lambda l=2 \mathrm{a} \lambda l$

For $F_{A D}=F_{B C}$

$$
\begin{aligned}
& \mathrm{F}=\int \frac{a}{l}(x+l) \lambda d x=\frac{a \lambda}{l}\left[\frac{x^{2}}{2}+l x\right]_{0}^{l}=\frac{3}{2} \mathrm{a} \lambda l \\
& 6 \mathrm{a} \lambda l=6 \times 5 \times 10^{5} \times 20 \times 10^{-6} \times 0.1 \\
& =6 \mathrm{~N} \quad(\text { ans })
\end{aligned}
$$

Q. 8 [44]

$\frac{q_{1}}{x-4}-\frac{q_{2}}{4}=0 \frac{q_{1}}{x+7}-\frac{q_{2}}{7}=0$
$\frac{q_{1}}{q_{2}}=\frac{x-4}{4}$
$\frac{q_{1}}{q_{2}}=\frac{x+7}{7}$
$\frac{x-4}{4}=\frac{x+7}{7}$
$7 \mathrm{x}-28=4 \mathrm{x}+28$
$3 \mathrm{x}=56$
$x=\frac{56}{3}$
$\frac{q_{1}}{q_{2}}=\frac{\frac{56}{3}+7}{7}=\frac{11}{3}$
$\left|\mathrm{q}_{2}\right|=+12 \mu \mathrm{c}$
$\Rightarrow \quad \mathrm{q}_{1}=12 \times \frac{11}{3}=44 \mu \mathrm{c}$
Q. 9 [17]

Initially, $\quad 2 \mathrm{~T} \cos \theta=\mathrm{mg}$

$1^{\text {st }}$ Case

$$
2 \times 6 \mathrm{k} \times \frac{9}{15}=\mathrm{qE}_{1}+\mathrm{mg}
$$

$$
\therefore \quad \frac{36}{5} \mathrm{k}-\frac{20}{13} \mathrm{k}=\mathrm{qE}_{1}
$$

$$
\therefore \quad \frac{(468-100) \mathrm{k}}{65}=\mathrm{qE}_{1}
$$

$$
\therefore \quad \frac{368 \mathrm{k}}{65}=\mathrm{qE}_{1}
$$

$2^{\text {nd }}$ Case

$$
\begin{array}{ll}
& \mathrm{T}_{2}=\mathrm{k}(40-24)=16 \mathrm{k} \\
& 2 \times 16 \mathrm{k} \times \frac{16}{20}=\mathrm{qE}_{2}+\mathrm{mg} \\
\therefore \quad & \mathrm{qE}_{2}=\frac{128 \mathrm{k}}{5}-\frac{20 \mathrm{k}}{13} \\
& =\frac{(1664-100) \mathrm{k}}{65}
\end{array}
$$

$$
\begin{align*}
& \mathrm{qE}_{2}=\frac{1564}{65} \mathrm{k} \tag{C}\\
\therefore \quad & \frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}=\frac{1564}{368}=4.25
\end{align*}
$$

KVPY

PREVIOUS YEAR'S

Q. 1 (D)

If one charge is removed then net force on Q is $\frac{\mathrm{q} \times \mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{R}^{2}}$
Towards the position of removed charge
Q. 2 (B)

$\mathrm{f}(\mathrm{r})=\mathrm{kr}$
now $\mathrm{F}_{\text {net }}$ on a particle is $2 \mathrm{~F}_{\mathrm{q}} \cos 30^{\circ}$ due to the other two charges
$\mathrm{F}_{\text {net }}=\frac{2 \mathrm{kq}^{2}}{\mathrm{a}^{2}} \times \frac{\sqrt{3}}{2}$
also $\mathrm{r}=\frac{2}{3}\left(\frac{\sqrt{3}}{2} \mathrm{a}\right)$
$\therefore \mathrm{a}=\sqrt{3} \mathrm{r}$ replacing it in $\mathrm{F}_{\text {net }}$ we get
$\mathrm{F}_{\text {net }}=\frac{2 \mathrm{kq}^{2}}{(\sqrt{3} \mathrm{r})^{2}} \times\left(\frac{\sqrt{3}}{2}\right)=\frac{\mathrm{kq}^{2}}{\sqrt{3} \mathrm{r}^{2}}$

$$
\begin{align*}
& \text { here } \quad \mathrm{T}=\mathrm{k}(26-24) \\
& \mathrm{T}=2 \mathrm{k} \\
& \text { So, } \quad 2 \times 2 \mathrm{k} \times \frac{5}{13}=\mathrm{mg} \tag{A}\\
& \text { Now length of string }=30 \mathrm{~cm} \\
& \mathrm{~T}_{1}=\mathrm{k}(30-24) \\
& \therefore \quad 2 \mathrm{~T}_{1} \cos \phi=\mathrm{qE}_{1}+\mathrm{mg} \\
& \text { Q. } 10 \text { [45] } \\
& \overrightarrow{\mathrm{OP}}=(8 \hat{\mathrm{i}}-k \hat{\mathrm{i}})-(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}) \\
& \overrightarrow{\mathrm{OP}}=6 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}) \Rightarrow \mathrm{OP}=10 \\
& \overrightarrow{\mathrm{E}}_{\mathrm{p}}=\mathrm{K} \frac{\mathrm{Q}}{\mathrm{OP}^{3}} \overrightarrow{\mathrm{OP}}=\frac{\mathrm{KQ}}{\mathrm{OP}^{2}} \mathrm{O} \hat{\mathrm{P}} \\
& E_{p}=\frac{9 \times 10^{9} \times 50 \times 10^{-6}}{(10)^{2}}=4500 \mathrm{~V} / \mathrm{m}
\end{align*}
$$

this is balanced by F (r)

$$
\begin{aligned}
& \therefore \mathrm{F}(\mathrm{r})=\mathrm{F}_{\mathrm{net}} \Rightarrow \mathrm{kr}=\frac{1 \times \mathrm{q}^{2}}{4 \pi \varepsilon_{0} \times \sqrt{3} \mathrm{r}^{2}} \\
& \therefore \mathrm{r}=\left(\frac{\sqrt{3} \mathrm{q}^{2}}{12 \pi \varepsilon_{0} \mathrm{k}}\right)^{1 / 3}
\end{aligned}
$$

Q. 3 (B)

Using law of conservation of mechanical energy Initial K.E. = Final P.E.

$$
\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{kq}^{2}}{\mathrm{r}} \quad \therefore \mathrm{r}=\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} \mathrm{mv}^{2}}
$$

Q. 4 (D)

For a conductor electric field inside its cavity is only due to inside charge and not due to outside charge.
Q. 5 (B)

Q. 6 (C)

For uncharged particle

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}} \tag{i}
\end{equation*}
$$

Range for particle of mass m and charge q.

$$
\begin{equation*}
\frac{L}{2}=\frac{u^{2} \sin 2 \theta}{g+\frac{q E}{m}} \tag{ii}
\end{equation*}
$$

From (i) and (ii)

$$
\begin{aligned}
& \frac{u^{2} \sin 2 \theta}{g}=\frac{u^{2} \sin 2 \theta}{g+\frac{q E}{m}} \\
& \Rightarrow m g=q E
\end{aligned}
$$

Range of particle of mass $m \&$ charge $2 q$.
$R=\frac{u^{2} \sin 2 \theta}{g+\frac{2 q E}{m}}=\frac{u^{2} \sin 2 \theta}{g\left(1+\frac{2 q E}{m g}\right)}=\frac{L}{3}$
Q. 7
(B)

When $\mathrm{r}<\mathrm{R} \quad \mathrm{E}=\frac{\rho \mathrm{r}}{3 \pi \epsilon_{0} \mathrm{r}^{2}}$

When $r>R$
$\mathrm{E}=\frac{\mathrm{Q}}{4 \pi \epsilon_{0} \mathrm{r}^{2}}$

Q. 8 (A)

energy conservation at A \& B
$\mathrm{qV}_{\mathrm{A}}+\frac{1}{2} \mathrm{mu}^{2}=\mathrm{qV}_{\mathrm{B}}+\frac{1}{2} \mathrm{~m} \times 2 \mathrm{u}^{2}$
$\mathrm{q}\left[\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right]=\frac{1}{2} \mathrm{mu}^{2}$
$\mathrm{q} \times \frac{\lambda}{2 \pi \epsilon_{0}} \operatorname{In}_{2}=\frac{1}{2} \mathrm{mu}^{2}$
energy conservation at A \& C

$$
\begin{aligned}
& \mathrm{qV}_{\mathrm{A}}+\frac{1}{2} \mathrm{mu}^{2}=\mathrm{qV}_{\mathrm{B}}+\frac{1}{2} \mathrm{mv}^{2} \\
& \mathrm{q}^{2}\left[\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{C}}\right]+\frac{1}{2} \mathrm{mu}^{2}=\frac{1}{2} \mathrm{mv}^{2} \\
& \frac{\mathrm{q} \lambda}{2 \pi \epsilon_{0}} \operatorname{In} 4+\frac{1}{2} \mathrm{mu}^{2}+\frac{1}{2} \mathrm{mv}^{2} \\
& \frac{\mathrm{q} \lambda}{2 \pi \epsilon_{0}} \operatorname{In} 2+\frac{1}{2} \mathrm{mu}^{2}+\frac{1}{2} \mathrm{mv}^{2} \\
& \mathrm{mu}^{2} \frac{1}{2} \mathrm{mu}^{2}=\frac{1}{2} \mathrm{mv}^{2} \\
& \frac{3}{2} \mathrm{u}^{2}=\frac{1}{2} \mathrm{v}^{2} \Rightarrow \mathrm{v}=\sqrt{3} \mathrm{u}
\end{aligned}
$$

Q. 9
(A)

outside the nucleus electric potential decreases
e^{-}is negativity charged
\therefore its PE is negative even outside the nucleus where nuclear attractive force is negligible
(3) $\rightarrow \mathrm{e}^{-}$
outside the nucleus
neutron will not
experience electric force
as it is neutral. So no potential energy associated with it outside nucleus
$1 \rightarrow$ neutron

Q. 10 (A)

Due to induction, bend in same direction

Q. 11 (C)

Q. 12 (1)

$\mathrm{V}_{\mathrm{B}} \frac{\mathrm{kq}}{\mathrm{b}}+\frac{\mathrm{k}(-\mathrm{q})}{\mathrm{c}}=\mathrm{V} \quad$ (Given)
$\mathrm{q}=\frac{4 \pi \varepsilon_{0} \cdot \mathrm{bc}}{\mathrm{c}-\mathrm{b}} . \mathrm{V}$
Charge on $\mathrm{C}=-\mathrm{q}$
Q. 13 (D)
$\mathrm{qV}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{V}=\frac{1}{2} \frac{\mathrm{mv}^{2}}{\mathrm{q}}$
$\mathrm{V}=\frac{1}{2} \times \frac{9 \times 10^{-31} \times\left(4 \times 10^{6}\right)^{2}}{1.6 \times 10^{-19}}=45 \mathrm{~V}$
45 V from higher to lower potential.

Q. 14 (D)

Charge on outer most surface is zero
Hence force on q is also ' 0 '
Q. 15 (B)

Energy $E=\frac{k Q \times Q}{d}=\frac{k Q^{2}}{d}$
Third charge is put between them

Energy of system $=\frac{k Q \times Q}{d}+\frac{k Q}{\frac{d}{2}}\left(\frac{-Q}{2}\right)+\frac{k Q}{\frac{d}{2}}\left(\frac{-Q}{2}\right)$
$=\frac{k Q^{2}}{\mathrm{~d}}+\left(\frac{-k Q^{2}}{\mathrm{~d}}\right)+\left(\frac{-k Q^{2}}{\mathrm{~d}}\right)$
$=-\frac{\mathrm{kQ}^{2}}{\mathrm{~d}}$
From (1)
Energy of system = E
Q. 16 (A)

Horizontal displacement $=\ell$
$\mathrm{t}=\frac{\ell}{\mathrm{u}}$
$v_{y}=u_{y}+$ at
$=0+\frac{\mathrm{eE}}{\mathrm{m}} \times \frac{\ell}{\mathrm{u}}$
$v y=\frac{\mathrm{eE}}{\mathrm{m}} \times \frac{\ell}{\mathrm{u}}$
vx remain same and it is equal to u
$\tan \theta=\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{v}_{\mathrm{x}}}=\frac{\mathrm{eE}}{\mathrm{m}} \frac{\ell}{\mathrm{u}} \times \frac{1}{\mathrm{u}}=\frac{\mathrm{eE} \ell}{\mathrm{mu}_{2}}$
$\tan \theta \propto \frac{1}{\mathrm{u}_{2}}$
when speed u is doubled then θ will become $\frac{1}{4}$ th.
$\therefore \tan \theta \frac{0.4}{4}=0.1$
Q. 17 (C)

$\mathrm{PEi}=$ Initial energy of system $=\frac{\mathrm{Q}^{2}}{8 \pi \varepsilon_{0} \mathrm{R}}$ (self energy of sheel)
$\mathrm{PE}_{\mathrm{f}}=$ Finalenergy of system $=\frac{\mathrm{Q}^{2}}{8 \pi \varepsilon_{0} \mathrm{R}}+\frac{\mathrm{q} \times(-\mathrm{q})}{4 \pi \varepsilon_{0} \mathrm{a}}+\frac{\mathrm{kQ} \times \mathrm{q}}{\mathrm{R}}+\frac{\mathrm{kQ}(-\mathrm{q})}{\mathrm{R}} \Rightarrow \frac{\mathrm{Q}^{2}}{8 \pi \varepsilon_{0} \mathrm{R}}-\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} \mathrm{R}}$
(self energy of shell) (Interaction energy between various charges)
Work done $=\mathrm{PE}_{\mathrm{f}}-\mathrm{PE}_{\mathrm{i}}$

$$
=\frac{-\mathrm{q}^{2}}{4 \pi \varepsilon_{0} \mathrm{a}}
$$

Magnitude of work done $=\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} a}$
Q. 18 (A)
$\mathrm{F}=\frac{\mathrm{dU}}{\mathrm{dr}}=\frac{-\mathrm{d}}{\mathrm{dr}}[\mathrm{qV}] \quad \mathrm{q} \rightarrow$ constant
$F=-q\left[\frac{d U}{d r}\right]$
$\mathrm{F}=-\mathrm{qk} \quad \leftarrow\binom{\mathrm{v}=\mathrm{kr}}{\frac{\mathrm{dV}}{\mathrm{dr}}=\mathrm{k}}$
$m \omega^{2} R=-q k$
$m\left(\frac{2 \pi}{T}\right)^{2} R=-q k$
$\frac{m\left(4 \pi^{2}\right) R}{T^{2}}=-q k$
$\Rightarrow \mathrm{T}^{2} \propto \mathrm{R}$
$\Rightarrow \mathrm{T} \propto \mathrm{R}^{1 / 2}$
Q. 19 (B)
$E=\frac{K}{r}$
$\therefore \quad \mathrm{F}=\mathrm{qE}$
for $1^{\text {st }}$ electron
(q) $\frac{1}{\mathrm{r}_{1}}=\frac{\mathrm{mv}_{1}^{2}}{\mathrm{r}_{1}}$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{q}=\mathrm{mv}_{1}{ }^{2} \\
& \mathrm{v}_{1}{ }^{2}=\frac{\mathrm{q}}{\mathrm{M}} \\
& \mathrm{v}_{1}=\sqrt{\frac{\mathrm{q}}{\mathrm{M}}} \\
& \therefore \text { Similarly } \mathrm{v}_{2}=\sqrt{\frac{\mathrm{q}}{\mathrm{M}}}
\end{aligned}
$$

$$
\mathrm{v}_{1}=\mathrm{v}_{2}
$$

$$
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\frac{2 \mathrm{nR}_{1}}{\mathrm{v}_{1}}}{\frac{2 \mathrm{nR}_{2}}{\mathrm{v}_{2}}}=\frac{2 \mathrm{nR}_{1}}{\mathrm{v}_{1}} \times \frac{\mathrm{v}_{2}}{2 \mathrm{nR}_{2}}
$$

$$
=\frac{\mathrm{R}_{1}}{\mathrm{v}_{1}} \times \frac{\mathrm{v}_{2}}{\mathrm{R}_{2}}=\frac{1}{2}
$$

Q. 20 (B)

Electric field lines should be perpendicular to surface of metal.

Q. 21 (A)

Let at the corner of cube potential $=\mathrm{V}_{0}$
Potential $\propto \frac{\mathrm{Q}}{\text { Side of cube }}$
$\mathrm{Q}=\rho \times \mathrm{a}^{3}$
So potential $\propto \frac{\rho \mathrm{a}^{3}}{\mathrm{a}}$
Potential $\propto \mathrm{a}^{2}$

Big cube consist of 8 cube
At centre of big cube of side 2 a , potential is $8 \mathrm{~V}_{0}$
Potential at corner of big cube $=\mathrm{V}_{0} \times(2)^{2}=4 \mathrm{~V}_{0}$
Required ratio $=\frac{8 \mathrm{~V}_{0}}{4 \mathrm{~V}_{0}}=2: 1$
Q. 27 (B)
Q. 22 (D)

If coloumb's force $\propto \frac{1}{\mathrm{r}^{3}}$ gauss's law is not valid $\therefore \phi \neq \frac{\mathrm{q}_{\mathrm{en}}}{\varepsilon_{0}}$
For static condition $\mathrm{E}=0$ in both of conductor $\therefore \phi$ through a Gaussian surface just under the surface of conductor $=0$ but as
$\phi=\frac{\mathrm{q}_{\mathrm{en}}}{\varepsilon_{0}}$ is not valid.
So $q_{\text {en }}=0$ is not correct statement. Some charge will present insider bulk of conductor.
Q. 23 (A)

Option 'A' is correct option. According charge conservation \& Gauss's law.
Q. 24 (B)
$\mathrm{q}=+2 \mathrm{e}$
$1 \alpha \mathrm{~V}=+2 \mathrm{ev}$.
Q. 25 (C)
$\mathrm{q}_{1}(1-\cos \alpha)=\mathrm{q}_{2}(1-\cos \beta)$ solving we get $30^{\circ}<\beta \leq$ 60°
Q. 26 (D)

$\frac{\mathrm{x}}{\mathrm{r}}=\tan \theta \Rightarrow \mathrm{dx}=\mathrm{rsec}^{2} \theta \mathrm{~d} \theta$
$\mathrm{dF}=\frac{2 \mathrm{~K} \lambda_{1}}{\mathrm{r} \sec \theta} \lambda_{2} \mathrm{dx}$
$\mathrm{dF}=\frac{2 \mathrm{~K} \lambda_{1} \lambda_{2}}{\mathrm{rsec} \theta} \mathrm{rsec}^{2} \theta \mathrm{~d} \theta$
$=2 \mathrm{~K} \lambda_{1} \lambda_{2} \sec \theta \mathrm{~d} \theta$
$\mathrm{F}_{\text {net }}=2 \int_{0}^{\pi / 2} \mathrm{dF} \cos \theta$
$=2 K \lambda_{1} \lambda_{2}$ Ans.

Q. 28 (C)
$E=\frac{d v}{d r}$
$\phi=4 \pi r^{2} \mathrm{E}=\frac{\mathrm{q}_{\text {enc. }}}{\varepsilon_{0}}$
$\mathrm{q}_{\text {enclosed }}=\mathrm{q} / \mathrm{e}$
Q. 29 (B)
$\mathrm{Q}=-\mathrm{K} 4 \pi \mathrm{R}^{2} \frac{\mathrm{dT}}{\mathrm{dR}}$
$\mathrm{Q} \propto \mathrm{R}^{2}$
Q. 30 (D)

$\mathrm{am}_{1}>\mathrm{am}_{2}$
$\frac{M_{1} g-Q_{1} E}{M_{1}}>\frac{M_{2} g-Q_{2} E}{M_{2}}$
$\mathrm{g}-\frac{\mathrm{Q}_{1} \mathrm{E}}{\mathrm{M}_{1}}>\mathrm{g}-\frac{\mathrm{Q}_{1} \mathrm{E}}{\mathrm{M}_{2}}$
$\frac{\mathrm{Q}_{2} \mathrm{E}}{\mathrm{M}_{2}}>\frac{\mathrm{Q}_{1} \mathrm{E}}{\mathrm{M}_{1}}$
$M_{1} \mathrm{Q}_{2}>\mathrm{M}_{2} \mathrm{Q}_{1}$
Q. 31 (C)

By method of image, the given arrangement is equivalent to

$F_{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{(2 d)^{2}}, F_{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{(2 d)^{2}}$,
$F_{3}=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{(2 \sqrt{2} d)^{2}}$
$\therefore F_{\text {net }}=\sqrt{2} \frac{q^{2}}{16 \pi \epsilon_{0} d^{2}}-\frac{q^{2}}{32 \pi \epsilon_{0} d^{2}}$
$=\frac{\mathrm{q}^{2}}{32 \pi \epsilon_{0} \mathrm{~d}^{2}}(2 \sqrt{2}-1)[$ towards O$]$
Q.32. (B)

Potential inside uniformly charged solid sphere is given by

$$
\begin{aligned}
& V=\frac{k Q}{2 R^{3}}\left[3 R^{2}-r^{2}\right] \\
& =\frac{k Q}{R}\left[\frac{3 R^{2}}{2 R^{2}}-\frac{r^{2}}{2 R^{2}}\right] \\
& =\frac{Q}{4 \pi \epsilon_{0} R}\left[\frac{3}{2}-\frac{1}{2}\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{2}\right]
\end{aligned}
$$

Compare with given formula, i.e.,
$\frac{\mathrm{Q}}{4 \pi \epsilon_{0} \mathrm{R}}\left[\mathrm{a}+\mathrm{b}\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{\mathrm{C}}\right]$
$\mathrm{a}=\frac{3}{2}, \mathrm{~b}=-\frac{1}{2}, \mathrm{c}=2$
Q. 33 (A)

As charge is increased in discrete manner. (A) graph should be correct option

JEE MAIN

PREVIOUS YEAR'S

Q. 1
 (1)

$\Phi_{\mathrm{P} 1}=\frac{3}{5}{ }_{0}(0.2)$
$\Phi_{\mathrm{P} 2}=\frac{4}{5} \mathrm{E}_{0}(0.3)$
$\therefore \quad \frac{\Phi_{\mathrm{P}_{1}}}{\Phi_{\mathrm{P}_{2}}}=\frac{0.6}{1.2}=\frac{1}{2}$
Q. 2 (36)

$F=\frac{K\left(1 \times 10^{-9}\right)\left(1 \times 10^{-9}\right)}{(0.5)^{2}}=36 \times 10^{-9} \mathrm{~N}$
$x=36$
Q. 3 (1)
$\mathrm{E}=\frac{\mathrm{K} \lambda}{\mathrm{r}}\left(\sin \theta_{1}+\sin \theta_{2}\right)$
$\theta_{1}=\theta_{2}=30^{\circ}, r=\frac{\sqrt{3} \ell}{2}, \lambda=\frac{\mathrm{Q}}{\ell}$
$\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\frac{\mathrm{Q}}{\ell}\left(\frac{1}{2}+\frac{1}{2}\right)}{\frac{\sqrt{3} \ell}{2}}=\frac{\mathrm{Q}}{2 \sqrt{3} \varepsilon_{0} \pi \ell^{2}}$

Q. 4 (2)

$\mathrm{t}=\left(\frac{1}{2}+9.8 \frac{\sqrt{3}}{2}\right) \times 0.2$

$$
\mathrm{t}=\sqrt{\frac{2 \mathrm{~s}}{\mathrm{a}}}
$$

$$
\mathrm{a}=\frac{9.8}{2}=(0.2)\left(\frac{1}{2}+9.8 \frac{\sqrt{3}}{2}\right)
$$

$$
=4.9-1.79 \approx 3.1
$$

$=\frac{2}{\sqrt{\mathrm{a}}}=\frac{2}{\sqrt{3.1}}$
$\approx 1.13 \mathrm{sec}$
Q. 5
Q. 6
Q. 7 (1)

If we consider two point charges +q and -q at position of -q charge, then after interchanging -q charge with $+q$ charge, net electric field at centre of cube is zero due to symmetry. Now remaining charges are $-2 q$ so
net electric field at centre is $\left(\frac{-8 \mathrm{kq}}{3 \mathrm{a}^{2}}\right)$.
Q. 8 (226)
using gues law it is a part of cube of side 12 cm and
charge at centre so $\Phi=\frac{\mathrm{Q}}{6 \varepsilon_{0}}-\frac{12 \mu \mathrm{C}}{6 \varepsilon_{0}}$
$\mathrm{x} \times 10^{3}=2 \times 4 \pi \times 9 \times 10^{9} \times 10^{-6}$
$\Phi=72 \pi \times 10^{3}$ SI units
$\mathrm{x}=226$
Q. 9 (128)

$2=\frac{\mathrm{Kq}}{\mathrm{r}}$
R, 512 q
$\frac{v^{\prime}}{2}=\frac{r(512)}{R} \quad v^{\prime}=\frac{K(512) q}{R}$
$\frac{\mathrm{v}^{\mathrm{\prime}}}{2}=\frac{512}{8}=128$
$\mathrm{v}^{\prime}=128$ volt
(512) $\frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\mathrm{R}=8 \mathrm{r}$
Q.10. (90)
$\mathrm{v}=\frac{\mathrm{kq}}{\mathrm{r}}=10 \mathrm{v}$
$27 \times \frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\mathrm{R}=3 \mathrm{r}$
$v^{\prime}=\frac{k \times 27 q}{3 r}=90$ volt
Q. 11 (640)

$$
\phi=\mathrm{E}_{\mathrm{x}} \mathrm{~A} \Rightarrow \frac{2}{5} \times 4 \times 10^{3} \times 0.4=640
$$

Q. 12 (2)
$\mathrm{qE}=\mathrm{Mg}$
$n \mathrm{nE}=\rho\left(\frac{4}{3} \pi^{3}\right) \times \mathrm{g}$
$\mathrm{n} \times 1.6 \times 10^{-19} \times 3.55 \times 10^{5}$
$=3 \times 10^{3} \times \frac{4}{3} \times \pi \times\left(2 \times 10^{-3}\right)^{3} \times 9.81$
$\mathrm{n}=173 \times 10^{(3-9-5+19)}$
$\mathrm{n}=1.73 \times 10^{10}$

Q. 13 (2)

Q. 14 (4)
Q. 15 (4)
Q. 16 (3)
Q. 19 (2)
Q. 20
(2)

As electric field is in y-direction so electric flux is only due to top and bottom surface Bottom surface $y=0$
$\Rightarrow \mathrm{E}=0 \Rightarrow \phi=0$
Tope surface $y=0.5 \mathrm{~m}$
$\Rightarrow \mathrm{E}=150(.5)^{2}=\frac{150}{4}$
Now flux $\phi=\mathrm{EA}=\frac{150}{4}(.5)^{2}=\frac{150}{4}$
By Gauss's law $\phi=\frac{\mathrm{Q}_{\text {in }}}{\epsilon_{0}}$
$\frac{150}{16}=\frac{\mathrm{Q}_{\text {in }}}{\epsilon_{0}}$
$\mathrm{Q}_{\text {in }}=\frac{150}{16} \times 8.85 \times 10^{-12}=8.3 \times 10^{-11} \mathrm{C}$
Option (2)
Q. 21 (2)
Q. 22 (4)

Q. 23 (1)

Considering outer spherical shell is non-conducting Electric field inside a metal sphere is zero.
$\mathrm{r}<\mathrm{R} \Rightarrow \mathrm{E}=0$
$r>R \Rightarrow E=\frac{k Q}{r^{2}}$

Option (2)
Considering outer spherical shell is conducting

$\mathrm{r}<\mathrm{R}, \mathrm{E}=0$
$\mathrm{R} \leq \mathrm{r}<\mathrm{a}$
$E=\frac{k Q}{r^{2}}$
$\mathrm{a} \leq \mathrm{r}<\mathrm{b}$,
$\mathrm{E}=0$
$r \geq b$

$$
\mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{r}^{2}}
$$

Option (1)

Q. 24 (3)

Since $\mathrm{f}=\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{A}}=\mathrm{EA} \cos \theta$

$\theta=90^{\circ}$
$\therefore \phi=0$
Q. 25 (2)
Q. 26 (1)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (A, D)

From the diagram, it can be observed that Q_{1} is positive, Q_{2} is negative.
No. of lines on Q_{1} is greater and number of lines is directly proportional to magnitude of charge.
So, $\left|\mathrm{Q}_{1}\right|>\left|\mathrm{Q}_{2}\right|$
Electric field will be zero to the right of Q_{2} as it has small magnitude \& opposite sign to that of Q_{1}.
Q. 2 (A)

Electrostatics repulsive force ; $\mathrm{F}_{\text {ele }}=\left(\frac{\sigma^{2}}{2 \varepsilon_{0}}\right) \pi \mathrm{R}^{2}$;
$\mathrm{F}=\mathrm{F}_{\text {ele }}=\frac{\sigma^{2} \pi \mathrm{R}^{2}}{2 \varepsilon_{0}}$

Q. 5 (C)

Q. 3 (D)

In equilibrium, $\mathrm{mg}=\mathrm{qE}$
In absence of electric field, $\mathrm{mg}=6 \pi \eta r v$
$\Rightarrow \mathrm{qE}=6 \pi \mathrm{qrv}$

$$
\begin{aligned}
& \mathrm{m}=\frac{4}{3} \pi \mathrm{Rr}^{3} \mathrm{~d} .=\frac{\mathrm{qE}}{\mathrm{~g}} \\
& \frac{4}{3} \pi\left(\frac{\mathrm{qE}}{6 \pi \eta \mathrm{v}}\right)^{3} \mathrm{~d}=\frac{\mathrm{qE}}{\mathrm{~g}}
\end{aligned}
$$

After substituting value we get,

$$
\mathrm{q}=8 \times 10^{-19} \mathrm{C} \quad \text { Ans. }
$$

Q. 4 (A,B,C,D)

Q. 6 (A)

The frequency will be same $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ but due to the constant qE force, the equilibrium position gets shifted by $\frac{\mathrm{qE}}{\mathrm{K}}$ in forward direction. So Ans. will be (A)
Q. 7 (C)

Surface Tension $\gamma=\frac{\text { force }}{\text { length }}$
$2\left[\frac{\sqrt{2} \mathrm{kq}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{kq}^{2}}{2 \mathrm{a}^{2}}\right]=\gamma \times \mathrm{a} \sqrt{2} \times 2$
$a=($ Some constant $)\left(\frac{q^{2}}{\gamma}\right)^{\frac{1}{3}}$ So
N = 3 Ans.
Q. 8 (B,D)
$=\frac{2 Q_{R_{B}}}{R_{A}+R_{B}}$
$\& \quad Q_{A}=\frac{2 Q^{2} R_{A}}{R_{A}+R_{B}} \Rightarrow Q_{A}>Q_{B}$
$\frac{\sigma_{\mathrm{A}}}{\sigma_{\mathrm{B}}}=\frac{\mathrm{Q}_{\mathrm{A}} / 4 \pi \mathrm{R}_{\mathrm{A}}^{2}}{\mathrm{Q}_{\mathrm{B}} / 4 \pi \mathrm{R}_{\mathrm{B}}^{2}}=\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{A}}}$ using (ii)
$\mathrm{E}_{\mathrm{A}}=\frac{\sigma_{\mathrm{A}}}{\epsilon_{0}} \quad \& \mathrm{E}_{\mathrm{B}}=\frac{\sigma_{\mathrm{B}}}{\epsilon_{0}} \because \sigma_{\mathrm{A}}<\sigma_{\mathrm{B}}$
$\Rightarrow \mathrm{E}_{\mathrm{A}}<\mathrm{E}_{\mathrm{B} \text { (at surface) }}$

$$
\begin{aligned}
& \frac{\mathrm{KQ}_{1}}{4 \mathrm{R}^{2}}=\frac{\mathrm{KQ}_{2}}{8 \mathrm{R}^{3}} \mathrm{R} \\
& \frac{\rho_{1}}{\rho_{2}}=4
\end{aligned}
$$

At point Q
If resultant electric field is zero then
$\frac{K_{2}}{4 R^{2}}+\frac{K Q_{2}}{25 R^{2}}=0$
$\frac{\rho_{1}}{\rho_{2}}=-\frac{32}{25}\left(\rho_{1}\right.$ must be negative $)$
Q. 9 (A,B,C)

$\mathrm{E}_{0}=6 \mathrm{~K}$ (along OD)
$\mathrm{V}_{0}=0$
Potential on line PR is zero PR
Q. 10 (C, D)

For electrostatic field,
$\overrightarrow{\mathrm{E}}_{\mathrm{P}}=\overrightarrow{\mathrm{E}}_{1}+\overrightarrow{\mathrm{E}}_{2}$
$=\frac{\rho}{3 \varepsilon_{0}} \overrightarrow{\mathrm{C}_{1} \mathrm{P}}+\frac{(-\rho)}{3 \varepsilon_{0}} \overrightarrow{\mathrm{C}_{2} \mathrm{P}}$
$=\frac{\rho}{3 \varepsilon_{0}}\left(\overrightarrow{\mathrm{C}_{1} \mathrm{P}}+\overrightarrow{\mathrm{PC}_{2}}\right)$
$\overrightarrow{\mathrm{E}}_{\mathrm{P}}=\frac{\rho}{3 \varepsilon_{0}} \overrightarrow{\mathrm{C}_{1} \mathrm{C}_{2}}$
Q. 11 (C)
$\mathrm{E}_{1}=\frac{\mathrm{KQ}}{\mathrm{R}^{2}}$
$\mathrm{E}_{2}=\frac{\mathrm{k}(2 \mathrm{Q})}{\mathrm{R}^{2}} \Rightarrow \mathrm{E}_{2}=\frac{2 \mathrm{kQ}}{\mathrm{R}^{2}}$
$\mathrm{E}_{3}=\frac{\mathrm{k}(4 \mathrm{Q}) \mathrm{R}}{(2 \mathrm{R})^{3}} \Rightarrow \mathrm{E}_{3}=\frac{\mathrm{kQ}}{2 \mathrm{R}^{2}}$
$\mathrm{E}_{3}<\mathrm{E}_{1}<\mathrm{E}_{2}$
Q. 12 (C)
$\frac{\mathrm{Q}}{4 \pi \epsilon_{0} \mathrm{r}_{0}^{2}}=\frac{\lambda}{2 \pi \epsilon_{0} \mathrm{r}_{0}}=\frac{\sigma}{2 \epsilon_{0}}$
$\mathrm{Q}=2 \pi \sigma \mathrm{r}_{0}^{2}$
A incorrect
$\mathrm{r}_{0}=\frac{\lambda}{\pi \sigma}$
B incorrect
$\mathrm{E}_{1}\left(\frac{\mathrm{r}_{0}}{2}\right)=\frac{4 \mathrm{E}_{1}\left(\mathrm{r}_{0}\right)}{1}$
$\mathrm{E}_{2}\left(\frac{\mathrm{r}_{0}}{2}\right)=2 \mathrm{E}_{2}\left(\mathrm{r}_{0}\right) \Rightarrow \quad \mathrm{C}$ correct
$E_{3}\left(\frac{r_{0}}{2}\right)=E_{3}\left(r_{0}\right)=E_{2}\left(r_{0}\right) D$ incorrect
Q. 13 (A)
(P)

Component of forces along x -axis will vanish. Net force along +ve y-axis
(Q)

Component of forces along y-axis will vanish. Net force along +ve x -axis
(R)

Component of forces along x -axis will vanish. Net force along -ve y-axis.

Component of forces along y-axis will vanish. Net force along -ve x -axis.
(A) $\mathrm{P}-3, \mathrm{Q}-1, \mathrm{R}-4, \mathrm{~S}-2$

Q. 14 (CD)

(A) ϕ total due to charge Q is $=\frac{\mathrm{Q}}{\varepsilon_{0}}$ so ϕ through the curved and flat surface will be less than $\frac{\mathrm{Q}}{\varepsilon_{0}}$
(B) The component of the electric field perpendicular to the flat surface will decrease so we move away from the centre as the distance increase (magnitude of electric field decreases) as well as the angle between the normal and electric field will increase.

2nd Method

$$
x=\frac{R}{\cos \theta}
$$

$\mathrm{E}=\frac{\mathrm{KQ}}{\mathrm{x}^{2}}=\frac{\mathrm{KQ} \cos ^{2} \theta}{\mathrm{R}^{2}}$
$\mathrm{E} \perp=\frac{\mathrm{KQ} \cos ^{3} \theta}{\mathrm{R}^{2}}$
As we move away from centre $\theta \uparrow \cos \theta \operatorname{so} \downarrow \mathrm{E} \perp \downarrow$
(C) Since the circumference is equidistant from 'Q'
it will be equuipotential $\mathrm{V}=\frac{\mathrm{KQ}}{\sqrt{2} \mathrm{R}}$
(D) $\Omega=2 \pi(1-\cos \theta) ; \theta=45^{\circ}$

$$
\begin{aligned}
& \phi=-\frac{\Omega}{4 \pi} \times \frac{\mathrm{Q}}{\varepsilon_{0}}=-\frac{2 \pi(1-\cos \theta)}{4 \pi} \frac{\mathrm{Q}}{\varepsilon_{0}} \\
& =-\frac{\mathrm{Q}}{2 \varepsilon_{0}}\left(1-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Q. 15 (A, B)

Field due to straight wire is perpendicular to the wire \& radially outward. Hence $\mathrm{E}_{\mathrm{z}}=0$

Length, $\mathrm{PQ}=2 \mathrm{R} \sin 60=\sqrt{3} \mathrm{R}$ According to Gauss's law
total flux $=\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q_{\text {in }}}{\epsilon_{0}}=\frac{\lambda \sqrt{3} R}{\epsilon_{0}}$

Q. 16 (B)

(i) $\mathrm{E}=\frac{\mathrm{KQ}}{\mathrm{d}^{2}} \Rightarrow \mathrm{E} \propto \frac{1}{\mathrm{~d}^{2}}$
(ii) Dipole

$$
\mathrm{E}=\frac{2 \mathrm{kp}}{\mathrm{~d}^{3}} \sqrt{1+3 \cos ^{2} \theta}
$$

$\mathrm{E} \propto \frac{1}{\mathrm{~d}^{3}}$ for dipole
(iii) For line charge

$$
\mathrm{E}=\frac{2 \mathrm{k} \lambda}{\mathrm{~d}}
$$

$$
\mathrm{E} \propto \frac{1}{\mathrm{~d}}
$$

(iv) $\mathrm{E}=\frac{2 \mathrm{~K} \lambda}{\mathrm{~d}-\ell}-\frac{2 \mathrm{~K} \lambda}{\mathrm{~d}+\ell}$
$=2 \mathrm{~K} \lambda\left[\frac{\mathrm{~d}+\ell-\mathrm{d}+\ell}{\mathrm{d}^{2}-\ell^{2}}\right]$
$\mathrm{E}=\frac{2 \mathrm{~K} \lambda(2 \ell)}{\mathrm{d}^{2}\left[1-\frac{\ell^{2}}{\mathrm{~d}^{2}}\right]}$

$$
\mathrm{E} \propto \frac{1}{\mathrm{~d}^{2}}
$$

(v) Electric field due to sheet

$$
\begin{aligned}
& \epsilon=\frac{\sigma}{2 \epsilon_{0}} \\
& \epsilon=\mathrm{v} \text { is independent of } \mathrm{r}
\end{aligned}
$$

Q. 17 (A,B,D)

For option (1), cylinder encloses the shell, thus option is correct
For option (2),

cylinder perfectly enclosed by shell, thus $\phi=0$, so option is correct. for option (3)

$\phi=\frac{2 \times \mathrm{Q}}{2 \epsilon_{0}}\left(1-\cos 53^{\circ}\right)=\frac{2 \mathrm{Q}}{5 \epsilon_{0}}$
For option (4) :
Flux enclosed by cylinder $=\phi=\frac{2 \mathrm{Q}}{2 \epsilon_{0}}\left(1-\cos 37^{\circ}\right)=$ $\frac{\mathrm{Q}}{5 \epsilon_{0}}$

Q. 18 (A,D)

(1) $\overrightarrow{\mathrm{P}}=\frac{\mathrm{P}_{0}}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
E.F. at B along tangent should be zero since circle is equipotential.
So, $E_{0}=\frac{K|\vec{P}|}{R^{3}} \& E_{B}=0$

So, $\mathrm{R}^{3}=\frac{\mathrm{KP}_{0}}{\mathrm{E}_{0}}=\left(\frac{\mathrm{P}_{0}}{4 \pi \epsilon_{0} \mathrm{E}_{0}}\right)$
So $\mathrm{R}=\left(\frac{\mathrm{P}_{0}}{4 \pi \epsilon_{0} \mathrm{E}_{0}}\right)^{1 / 3}$
So, (1) is correct
(2) Because E_{0} is uniform \& due to dipole E.F. is different at different points, so magnitude of total E.F. will also be different at different points

So, (2) is incorrect
(3) $E_{A}=\frac{2 K P}{R^{3}}+\frac{K P}{R^{3}}=3 \frac{K P}{R^{3}} \frac{P}{\sqrt{2}}(\hat{i}+\hat{j})$

So, (3) is wrong
(4) $E_{B}=0$
so, (4) is correct
Q. 19 (A)

Let charge on the sphere initially be Q .
$\therefore \frac{\mathrm{kQ}}{\mathrm{R}}=\mathrm{V}_{0}$
and charge removed $=\alpha \mathrm{Q}$
(1)

and $\mathrm{V}_{\mathrm{P}}=\frac{\mathrm{kQ}}{\mathrm{R}}-\frac{2 \mathrm{kQ} \alpha}{\mathrm{R}}=\frac{\mathrm{kQ}}{\mathrm{R}}(1-2 \alpha)$
$V_{C}=\frac{k Q(1-\alpha)}{R}$
$\therefore \frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{P}}}=\frac{1-\alpha}{1-2 \alpha}$

(2) $\left(E_{C}\right)_{\text {initial }}=$ zero
$\left(E_{C}\right)_{\text {initial }}=\frac{k \alpha Q}{R^{2}}$

\Rightarrow Electric field increases
(3) $\left(E_{P}\right)_{\text {final }}=\frac{k Q}{4 R^{2}}-\frac{k \alpha Q}{R^{2}}$
$\Delta \mathrm{E}_{\mathrm{P}}=\frac{\mathrm{kQ}}{4 \mathrm{R}^{2}}-\frac{\mathrm{kQ}}{4 \mathrm{R}^{2}}+\frac{\mathrm{k} \alpha \mathrm{Q}}{\mathrm{R}^{2}}=\frac{\mathrm{k} \alpha \mathrm{Q}}{\mathrm{R}^{2}}=\frac{\mathrm{V}_{0} \alpha}{\mathrm{R}}$

(4) $\left(V_{C}\right)_{\text {initial }}=\frac{k Q}{R}$
$\left(\mathrm{V}_{\mathrm{C}}\right)_{\text {final }}=\frac{\mathrm{kQ}(1-\alpha)}{\mathrm{R}}$
$\Delta \mathrm{V}_{\mathrm{C}} \frac{\mathrm{kQ}}{\mathrm{R}}(\alpha)=\alpha \mathrm{V}_{0}$

Q. 20 (B,C)

$a_{y}=-400 \sqrt{3} \times 10^{10}\left[\mathrm{qE}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}}\right]$
$R=5=\frac{40 \times 10^{12} \sin 2 \theta}{400 \sqrt{3} \times 10^{10}}\left[R(\right.$ range $\left.)=\frac{u^{2} \sin 2 \theta}{a_{y}}\right]$
$\sin 2 \theta=\frac{\sqrt{3}}{2}$
$2 \theta=60^{\circ}, 120 \Rightarrow \theta=30^{\circ}, 60^{\circ}$
Time of flight $\mathrm{T}_{1}=\frac{2 \times 2 \sqrt{10} \times 10^{6} \times \frac{1}{2}}{400 \sqrt{3} \times 10^{10}}=\sqrt{\frac{5}{6}} \mu \mathrm{~s}$ (for $\theta=30^{\circ}$)

Time of flight $\mathrm{T}_{2}=\frac{2 \times 2 \sqrt{10} \times 10^{6} \times \frac{\sqrt{3}}{2}}{400 \sqrt{3} \times 10^{10}}=\sqrt{\frac{5}{3}} \mu \mathrm{~s}$ (for $\theta=60^{\circ}$)
Q. 21 (3.14)
$\Delta \ell \rightarrow \mathrm{x}$
At $\ell: \mathrm{Fe}=\mathrm{F}_{\mathrm{SP}}$
$\mathrm{k} \ell=\frac{2 \mathrm{kpq}}{\ell^{3}}$

$\mathrm{F}_{\mathrm{net}}=\mathrm{F}_{\mathrm{sp}}-\mathrm{Fe}=\mathrm{k}(\ell+\mathrm{x})-\frac{\mathrm{q}(2 \mathrm{kp})}{(\ell+\mathrm{x})^{3}}$

$$
\begin{aligned}
& =\mathrm{k}(\mathrm{x}+\ell)-\frac{\mathrm{q}(2 \mathrm{kp})}{\ell^{3}(1+\mathrm{x} / \ell)^{3}} \\
& \mathrm{kx}+\mathrm{k} \ell-\mathrm{q}\left(\frac{2 \mathrm{kp}}{\ell^{3}}\right)\left(1-\frac{3 \mathrm{x}}{\ell}\right) \\
& =\mathrm{kx}+\mathrm{k} \ell-\mathrm{q}\left(\frac{2 \mathrm{kp}}{\ell^{3}}\right)+\frac{2 \mathrm{kpq}}{\ell^{3}} \cdot \frac{3 \mathrm{x}}{\ell} \\
& \mathrm{~F}_{\mathrm{N}}=\mathrm{kx}+\mathrm{k} \ell\left(\frac{3 \mathrm{x}}{\ell}\right)=4 \mathrm{kx} \\
& \mathrm{k}_{\mathrm{eq}}=4 \mathrm{k} \quad \mathrm{~T}=2 \pi \sqrt{\frac{\mathrm{~m}}{4 \mathrm{k}}}=\pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \\
& \mathrm{f}=\frac{1}{\pi} \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
& \text { So } \delta=\pi=3.14
\end{aligned}
$$

Q. 22 (6.40)

$$
\begin{aligned}
& \phi=\frac{\int \mathrm{dq}}{\varepsilon_{0}}=\frac{\int_{0}^{\mathrm{R}} \sigma_{0}\left(1-\frac{\mathrm{r}}{\mathrm{R}}\right) 2 \pi \mathrm{rdr}}{\varepsilon_{0}} \\
& \phi=\frac{\int \mathrm{dq}}{\varepsilon_{0}}=\frac{\int_{0}^{\mathrm{R} / 4} \sigma_{0}\left(1-\frac{\mathrm{r}}{\mathrm{R}}\right) 2 \pi \mathrm{rdr}}{\varepsilon_{0}}
\end{aligned}
$$

$$
\therefore \frac{\phi_{0}}{\phi}=\frac{\sigma_{0} 2 \pi \int_{0}^{\mathrm{R}}\left(\mathrm{r}-\frac{\mathrm{r}^{2}}{\mathrm{R}}\right) \mathrm{dr}}{\sigma_{0} 2 \pi \int_{0}^{\mathrm{R} / 4}\left(\mathrm{r}-\frac{\mathrm{r}^{2}}{\mathrm{R}}\right) \mathrm{dr}}
$$

$$
=\frac{\frac{\mathrm{R}^{2}}{2}-\frac{\mathrm{R}^{2}}{3}}{\frac{\mathrm{R}^{2}}{32}-\frac{\mathrm{R}^{2}}{3 \times 64}}=\frac{32}{5}=6.40
$$

Q. 23 (A,C)

The net electric force on any sphere is lesser but by Coulomb law the force due to one sphere to another remain the same.

In equilibrium
$\mathrm{T} \cos \frac{\alpha}{2}-\mathrm{mg}$
and $\mathrm{T} \sin \frac{\alpha}{2}=\mathrm{F}$
After immersed is dielectric liquid.
As given no change in angle α.
So $\mathrm{T} \cos \frac{\alpha}{2}=\mathrm{mg}-\mathrm{V} \rho \mathrm{g}$
when $\rho=800 \mathrm{Kg} / \mathrm{m}^{3}$
and $\mathrm{T} \sin \frac{\alpha}{2}=\frac{\mathrm{F}}{\mathrm{e}_{\mathrm{r}}}$
$\therefore \frac{\mathrm{mg}}{\mathrm{F}}=\frac{\mathrm{mg}-\mathrm{V} \rho \mathrm{g}}{\frac{\mathrm{F}}{\mathrm{e}_{\mathrm{r}}}}$
$\frac{1}{\mathrm{e}_{\mathrm{r}}}=1-\frac{\rho}{\mathrm{d}}$
d=density of sphere
$\frac{1}{21}=1-\frac{800}{d}$
$\mathrm{d}=840$
Two point charges -Q and $+\mathrm{Q} \sqrt{3}$ are placed in the xy-plane at the origin $(0,0)$ and a point $(2,0)$, respectively, as shown in the figure. This results in an equipotential circle of radius R and potential $\mathrm{V}=0$ in the xy-plane with its center at (b, 0). All lengths are measured in meters.

Q. 25 (3.00)

Capacitance

ELEMENTRY

Q. 1 (4)
$\mathrm{C}=\frac{\mathrm{K} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
Q. 2 (2)

By using $\mathrm{V}_{\text {big }}=\mathrm{n}^{2 / 3} \mathrm{v}_{\text {small }}$
$\Rightarrow \frac{\mathrm{V}_{\mathrm{big}}}{\mathrm{V}_{\text {small }}}=(8)^{2 / 3}=\frac{4}{1}$
Q. 3 (1)
Q. 4 (1)
Q. 5 (1)

The given circuit is equivalent to a parallel combination two identical capacitors

Hence equivalent capacitance between A and B is

$$
\mathrm{C}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}+\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{2 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}
$$

Q. 6 (2)

The given circuit can be drawn as where $\mathrm{C}=(3+2) \mu \mathrm{F}=5 \mu \mathrm{~F}$

$$
\begin{aligned}
& \frac{1}{\mathrm{C}_{\mathrm{PQ}}}=\frac{1}{5}+\frac{1}{20}+\frac{1}{12}=\frac{20}{60}=\frac{1}{3} \\
\Rightarrow & \mathrm{C}_{\mathrm{PQ}}=3 \mu \mathrm{~F}
\end{aligned}
$$

Q. 7 (2)

The given circuit can be redrawn as follows

Q. 8
(2)

The given circuit can be simplified as follows

Hence equivalent capacitance between A and B is $2 \mu \mathrm{~F}$.
Q. 9 (3)

The circuit can be rearranged as

Q. 10 (1)

Q. 11 (3)

Charge on $\mathrm{C}_{1}=$ charge on C_{2}
$\Rightarrow \mathrm{C}_{1}\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{D}}\right)=\mathrm{C}_{2}\left(\mathrm{~V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{B}}\right)$
$\Rightarrow \mathrm{C}_{1}\left(\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{D}}\right)=\mathrm{C}_{1}\left(\mathrm{~V}_{\mathrm{D}}-\mathrm{V}_{2}\right) \Rightarrow \mathrm{V}_{\mathrm{D}}=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$

Q. 12 (4)

Potential difference across both the lines is same i.e. 2 V . Hence charge flowing in line 2

$\mathrm{Q}=\left(\frac{2}{2}\right) \times 2=2 \mu \mathrm{C}$. So charge on each capacitor in line (2) is $2 \mu \mathrm{C}$

Q. 13 (3)

Given circuit can be reduced as follows
In series combination charge on each capacitor remain same. So using $\mathrm{Q}=\mathrm{CV}$
$\Rightarrow \mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2} \Rightarrow 3\left(1200-\mathrm{V}_{\mathrm{p}}\right)=6\left(\mathrm{~V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{B}}\right)$
$\Rightarrow 1200-\mathrm{V}_{\mathrm{p}}=2 \mathrm{~V}_{\mathrm{p}} \quad\left(\because \mathrm{V}_{\mathrm{B}}=0\right)$
$\Rightarrow 3 \mathrm{~V}_{\mathrm{p}}=1200 \Rightarrow \mathrm{~V}_{\mathrm{p}}=400$ volt
Q. 14 (4)
$\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \times 2 \times 10^{-6} \times(50)^{2}=25 \times 10^{-4} \mathrm{~J}=25 \times$
$10^{3} \mathrm{erg}$

Q. 15 (1)

Let $\mathrm{E}=\frac{1}{2} \mathrm{C}_{0} \mathrm{~V}_{0}^{2}$ then, $\mathrm{E}_{1}=2 \mathrm{E}$ and $\mathrm{E}_{2}=\frac{\mathrm{E}}{2}$
So $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{4}{1}$

Q. 16 (2)

In series combination of capacitors, voltage distributes on them, in the reverse ratio of their c a \quad p \quad a \quad c \quad i \quad t \quad a \quad n \quad c
i.e. $\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}}=\frac{3}{2}$

Also $\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}=10$
On solving (i) and (ii) $\mathrm{V}_{\mathrm{A}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=4 \mathrm{~V}$
Q. 17 (2)
$\mathrm{U}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}$; in given case C increases so U will decrease

Q. 18 (3)

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{R}}=\mathrm{C}_{1}+\mathrm{C}_{2}=\frac{\mathrm{k}_{1} \varepsilon_{0} \mathrm{~A}_{1}}{\mathrm{~d}}+\frac{\mathrm{k}_{2} \varepsilon_{0} \mathrm{~A}_{2}}{\mathrm{~d}} \\
& =\frac{2 \times \varepsilon_{0} \frac{\mathrm{~A}}{2}}{\mathrm{~d}}+\frac{4 \times \varepsilon_{0} \frac{\mathrm{~A}}{2}}{\mathrm{~d}}=2 \times \frac{10}{2}+4 \times \frac{10}{2}=30 \mu \mathrm{~F}
\end{aligned}
$$

Q. 19 (4)

$\mathrm{C}_{1}=\frac{\mathrm{K}_{1} \varepsilon_{0} \frac{\mathrm{~A}}{2}}{\left(\frac{d}{2}\right)}=\frac{\mathrm{K}_{1} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} ; \mathrm{C}_{2}=\frac{\mathrm{K}_{2} \varepsilon_{0} \frac{\mathrm{~A}}{2}}{\left(\frac{d}{2}\right)}=\frac{\mathrm{K}_{2} \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$ and
$\mathrm{C}_{3}=\frac{\mathrm{K}_{3} \varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}}=\frac{\mathrm{K}_{3} \varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}}$
Now, $\mathrm{C}_{\text {eq }}=\mathrm{C}_{3}+\frac{\mathrm{C}_{1} \mathrm{C}_{3}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\left(\frac{\mathrm{K}_{3}}{2}+\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}\right) \cdot \frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$

JEE-MAIN

OBJECTIVE QUESTIONS

Q. $1 \quad$ (1)
$\mathrm{Q}_{\mathrm{t}}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=150 \mu \mathrm{C}$
$\frac{\mathrm{Q}_{1}^{\prime}}{\mathrm{Q}_{2}^{\prime}}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{1}{2} \Rightarrow \mathrm{Q}_{1}^{\prime}=50 \mu \mathrm{C}$
$\mathrm{Q}_{2}{ }^{\prime}=100 \mu \mathrm{C}$
$25 \mu \mathrm{C}$ charge will flow from smaller to bigger sphere

Q. 2 (4)

Charge is flow until potential are equal and in charge flow energy is decrease
$\frac{\mathrm{Q}_{1}}{\mathrm{C}_{1}}=\frac{\mathrm{Q}_{2}}{\mathrm{C}_{2}} \Rightarrow \mathrm{Q}_{1} \mathrm{R}_{2}=\mathrm{Q}_{2} \mathrm{R}_{1}$.
Q. 3 (1)
$\mathrm{C}=4 \pi \varepsilon_{0} \mathrm{R}$
$\mathrm{R}=\frac{\mathrm{C}}{4 \pi \epsilon_{0}}=1 \times 10^{-6} \times 9 \times 10^{9}=9 \mathrm{~km}$
Q. 4 (4)

Charge / Current flows from higher to lower potential or Q / C ratio.

Q. 11 (2)

Q. 5 (1)

Charge / Current flows from higher to lower potential or Q / C ratio.
$V_{A}=\frac{K Q}{R}, V_{B}=\frac{K Q}{2 R} \quad \Rightarrow V_{A}>V_{B}$
$A \rightarrow B$
Q. 6 (2)

Given $C=\frac{\epsilon_{0} A}{d}$
If separation is halved $d^{\prime}=d / 2$
$\mathrm{C}^{\prime}=\epsilon_{0} \mathrm{~A} / \mathrm{d}^{\prime}=\frac{\epsilon_{0} \mathrm{~A} \times 2}{\mathrm{~d}}=2 \mathrm{C}$
Q. 7 (4)
$C=\frac{k \in_{0} A}{d}$
where $\mathrm{k}=$ dielectric constant of medium between the plates
A = Area, $d=$ distance between the plates
Q. 8 (3)
$\mathrm{C}_{\mathrm{i}}=4 \pi \in_{0} \mathrm{r}$
$C_{f}=4 \pi \in_{0} R$
The volume of the n drops is equal to the bigger drop.
$\mathrm{N} \frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\mathrm{R}=\mathrm{N}^{1 / 3} \mathrm{r}$
$\mathrm{C}_{\mathrm{f}}=\mathrm{N}^{1 / 3} 4 \pi \epsilon_{0} \mathrm{r}$
Q. 9 (3)
$\mathrm{V}_{1}: \mathrm{V}_{2}=\frac{1}{\mathrm{C}_{1}}: \frac{1}{\mathrm{C}_{2}}=\mathrm{C}_{2}: \mathrm{C}_{2}$
$V_{1}=\frac{C_{2}}{C_{2}+C_{1}} V$
Q. 10 (3)
$\mathrm{Q}_{1}=900 \mu \mathrm{C}$
$\mathrm{Q}_{2}=2500 \mu \mathrm{C}$
When the two capacitors are connected together let the common potential is V .
$900+2500=(3+5) \mathrm{V}$
$V=\frac{3400}{8}=425 \mathrm{~V}$

$$
\mathrm{C}_{\mathrm{eq}}=\frac{4 \mathrm{C}}{2}=2 \mathrm{C}
$$

Q. 12 (3)

$$
C_{e q}=C+\frac{2 C}{2}+C=3 C
$$

Q. 13 (4)

$\frac{1}{\mathrm{C}_{1}}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3} \Rightarrow \mathrm{C}_{1}=1 \mu \mathrm{~F}, \mathrm{C}_{2}=2+1=3 \mu \mathrm{~F}$ $\mathrm{C}_{\mathrm{eq}}=1 \mu \mathrm{~F}$.

Q. 14 (2)

solving by parallel series combinations,

$\mathrm{C}_{\text {eq }}=200 \mathrm{pF}$

Q. 15 (2)

Solving the circuit using following steps

Resultant capacitance of the circuit $=1.6 \mathrm{C}$
Q. 16 (2)

As the resulting circuit is a Wheat stone bridge hence current in $13 \mu \mathrm{~F}$ capacitor is zero. Hence the circuit now reduces to

The resultant capacitance is $\frac{35}{6}+\frac{10}{6}=\frac{45}{6}=\frac{15}{2}$ $\mu \mathrm{F}$

Q. 17 (2)

As the resulting circuit is a Wheat stone bridge hence current in $5 \mu \mathrm{~F}$ capacitor is zero. Hence the circuit now reduces to

The resultant capacitance is $\frac{30}{4}+\frac{6}{4}=9 \mu \mathrm{~F}$
Q. 18 (2)

Isolated capacitor $\Rightarrow \mathrm{Q}=$ constant separation dincrease $\Rightarrow C=$ decrease $\mathrm{Q}=\mathrm{CV} \Rightarrow \mathrm{V}=$ increase
Q. 19 (4)

The curve shown is for a function $\mathrm{xy}=$ constant $\mathrm{Q}=\mathrm{CV}$
Q. 20 (1)
$\mathrm{E}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}$
$2.2 \times 10^{-10}=\frac{1}{2} 8.8 \times 10^{-12} \mathrm{E}^{2}$
$\mathrm{E}=7 \mathrm{NC}^{-1}$
Q. 21 (4)

Since potential of point d \& e is same. No charge will be stored on $5 \mu \mathrm{~F}$ capacitor.

Q. 22 (3)

Force between plates $=\mathrm{qE}$
$=\frac{q \sigma}{2 \epsilon_{0}}=\left(\frac{q}{2 A \varepsilon_{0}}\right) q=k x, x=\frac{q^{2}}{2 A \varepsilon_{0} K}$
Q. 23 (1)

From junction law

$$
\begin{aligned}
& (\mathrm{V}-10) 1+(\mathrm{V}-20) 3+(\mathrm{V}+25) 2=0 \\
& 6 \mathrm{~V}=120 \\
& \mathrm{~V}=20 \text { Volt }
\end{aligned}
$$

Q. $24 \quad$ (2)

Let q be the charge on all the capacitor

Apply KVL

$$
\begin{aligned}
& 31-\frac{q}{4}-\frac{q}{2}-\frac{q}{4}-7-\frac{q}{6}-\frac{q}{12}=0 \\
& 24=\left[\frac{3+6+3+2+10}{12}\right] q \\
& q=12 \mu C
\end{aligned}
$$

Now $V_{N}+\frac{q}{6}+7+\frac{q}{4}=V_{M}$
$\mathrm{V}_{\mathrm{M}}-\mathrm{V}_{\mathrm{N}}=12 \mathrm{~V}$
Q. 25 (4)

Applying junction law

$$
(x-2) 2+(x-0) 2+[x-(-2)] 2=0 \Rightarrow x=0
$$

Applying junction law
$(x-6) 4+(x-12) 2+(x-24) 1=0$
$7 \mathrm{x}=72 \Rightarrow \mathrm{x}=\frac{72}{7}$ volt
So, $\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=0-\mathrm{x}=-\frac{72}{7}$ Volt
Q. 26 (1)

$\mathrm{q}_{1}: \mathrm{q}_{2}=3: 4$
$\mathrm{q}_{1}=\frac{3}{7} \times 20 \mu \mathrm{C}$
Q. 27 (2)

$C_{e q}=\frac{15}{8}+4=\frac{47}{8} \mu \mathrm{~F}$
$\frac{q}{3}+\frac{q}{5}=8 \Rightarrow q=15 \mu C$
Charge on $2 \mu \mathrm{~F}$
$\frac{q_{1}}{2}=\frac{15-q_{1}}{3} \Rightarrow q_{1}=\frac{30}{5}=6.0 \mu \mathrm{C}$
Q. 28 (1)
$\mathrm{V}_{1}: \mathrm{V}_{2}=\frac{1}{\mathrm{C}_{1}}: \frac{1}{\mathrm{C}_{2}}=\mathrm{C}_{1}: \mathrm{C}_{2}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{1}{4}$

Q. 29 (4)

To form a composite of 1000 V we need 4 capacitance in series.
4 capacitance in series means in each branch capacitance is $2 \mu \mathrm{~F}$. So 8 branches are needed in parallel. So a total of $8 \times 4=32$ capacitors are required.

Q. 30 (3)

For charge in $5 \mu \mathrm{~F}$ capacitor
$\mathrm{C}_{1}: \mathrm{C}_{2}=2: 5$
$\frac{\mathrm{q}_{1}}{\mathrm{q}_{2}}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$
$\mathrm{q}_{2}=\frac{5 \times 18}{10}$
charge on $5 \mu \mathrm{~F}$ capacitor is $9 \mu \mathrm{C}$
charge on $4 \mu \mathrm{~F}$ capacitor is $24 \mu \mathrm{C}$
Ratio of charges $=9: 24=3: 8$

Q. 31 (4)

$\mathrm{Q}=\frac{3}{2} \mathrm{C} \times 60=90 \mathrm{C}$
$\mathrm{Q}_{1}: \mathrm{Q}_{2}=\mathrm{C}_{1}: \mathrm{C}_{2}=2: 1$
$\mathrm{Q}_{2}=\frac{1}{3} \times 90=30 \mathrm{C}$
Potential difference across $\mathrm{C}=\frac{30 \mathrm{C}}{\mathrm{C}}=30 \mathrm{~V}$
Q. 32 (2)

$\mathrm{C}_{\mathrm{eq}}=\frac{2 \mathrm{C} \times \mathrm{C}}{3 \mathrm{C}}=\frac{2 \epsilon_{0} \mathrm{~A}}{3 \mathrm{~d}}$
$\mathrm{Q}=\frac{2}{3} \times \frac{\in_{0} \mathrm{~A}}{\mathrm{~d}} \times \mathrm{E}$
Q. 33 (2)

Total charge on plate $\mathrm{C}=40 \mu \mathrm{C}$
Q. 34 (2)

$\mathrm{C}_{\text {eq }}=2 \mathrm{C}=\frac{2 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
Q. 35 (1)

Maximum charge on first capacitor $\mathrm{q}_{1_{\max }}=160 \mu \mathrm{C}$
Maximum charge on second capacitor $\mathrm{q}_{\mathrm{z}_{\text {max }}}=1280$
$\mu \mathrm{C}$.
As capacitors are connected in series. Hence maximum charge they can store is $160 \mu \mathrm{C}$.

Q. 36 (4)

Maximum charge on $1^{\text {st }}$ capacitor $=6 \times 10^{-3} \mathrm{C}$.
Maximum charge on $2^{\text {nd }}$ capacitor $=8 \times 10^{-3} \mathrm{C}$.
In series the maximum charge they can have is $6 \times$ $10^{-3} \mathrm{C}$

Hence maximum voltage $=$
$\mathrm{V}=\frac{6 \times 10^{-3}}{1 \times 10^{-6}}+\frac{6 \times 10^{-3}}{2 \times 10^{-6}}=9 \mathrm{KV}$
Q. 37 (1)
$\mathrm{Q}_{1 \text { max }}=3 \mathrm{C} \times 10^{3} \mathrm{C}$.
$Q_{2 \max }=4 \mathrm{C} \times 10^{3} \mathrm{C}$.
$\mathrm{Q}_{\max }$ for first branch $3 \mathrm{C} \times 10^{3} \mathrm{C}$

$$
\mathrm{V}_{\max _{1}}=\frac{3 \mathrm{C} \times 10^{3} \times 5 \mathrm{C}}{6 \mathrm{C}^{2}}=\frac{5}{2} \mathrm{KV}
$$

Similarly for second branch
$\mathrm{Q}_{3_{\text {max }}}=7 \mathrm{C} \times 10^{3} \mathrm{C} \quad \mathrm{Q}_{4_{\text {max }}}=6 \mathrm{C} \times 10^{3} \mathrm{C}$
$\mathrm{V}_{\max _{2}}=\frac{6 \mathrm{C} \times 10^{3}}{21 \mathrm{C}^{2}} \times 10 \mathrm{C}=\frac{20}{7} \mathrm{kV}$
The two branches are in parallel. So in order to find max value of voltage for which no capacitor breaks down $\mathrm{V}_{\max _{1}}<\mathrm{V}_{\max _{2}}$.
Q. 38 (2)

Hence maximum charge that the series can with stand is $5 \mu \mathrm{C}$. So break down voltage $=5 \times \frac{31}{30}=\frac{31}{6}$ volt
Q. 39 (1)

Force between capacitor plates is equal to $\frac{\sigma^{2} \mathrm{~A}}{2 \epsilon_{0}}$.
As the system is in equilibrium
$\frac{\sigma^{2} \mathrm{~A}}{2 \epsilon_{0}}=\mathrm{mg}$
Q. 40 (2)

Force between the plates is given by
$\frac{\sigma^{2} A}{2 \epsilon_{0}}$ or
$\mathrm{F}=\mathrm{q} \frac{\mathrm{E}}{2}=\frac{1 \times 10^{-6} \times 10^{5}}{2}$
$\left[\frac{E}{2}\right.$ as electric field is due to charges on a single plate
is to be written] $\frac{0.1}{2} \mathrm{~N}=0.05 \mathrm{Nt}$
Q. 41 (3)

We know that force between plates is

$$
\begin{aligned}
& \frac{\sigma^{2} A}{2 \epsilon_{0}}=\frac{Q^{2}}{2 A \epsilon_{0}}=\frac{C^{2} V^{2}}{2 A \epsilon_{0}} \\
& =\frac{\epsilon_{0}^{2} A^{2} V^{2}}{2 A \in_{0} d^{2}}=\frac{\epsilon_{0} A V^{2}}{2 d^{2}} \\
& C_{i}=\frac{\epsilon_{0} A v^{2}}{2 d^{2}} C_{f}=\frac{\epsilon_{0} A v^{2} \times 4}{2 d^{2}}
\end{aligned}
$$

Q. 42 (3)

Let us assume charge on A_{1} is q and potential of A_{1} is zero as it is earthed.

Potential of A_{1} is due to charges $\mathrm{Q} \& \mathrm{q}$. So we can write the equation as
$V=\frac{K Q}{r} q+\frac{K Q}{R}=0$ $\frac{\mathrm{q}}{\mathrm{r}}=\frac{-\mathrm{Q}}{\mathrm{R}} \Rightarrow \mathrm{q}=\frac{-\mathrm{Qr}}{\mathrm{R}}$
Q. 43 (1)

The system from a sperical capacitor and for a spherical capacitor capacitance is given by :
$\mathrm{C}=\frac{4 \pi \varepsilon_{0} \mathrm{r}_{1} \mathrm{r}_{2}}{\mathrm{r}_{2}-\mathrm{r}_{1}}$
Q. 44 (3)
$\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}$
$=\frac{1}{2} \times 4 \times 10^{-6} \times\left(1 \times 10^{3}\right)^{2}$
$=2$ Joules.

Q. 45 (1)

Charge carries electrical energy so capacitor stores electrical energy.
Q. 46 (2)
$W=U_{f}-U_{i}=\frac{1}{2} C V_{f}^{2}-\frac{1}{2} C V_{i}^{2}=\frac{1}{2} C\left(40^{2}-20^{2}\right)$
$\mathrm{W}=600 \mathrm{C}$
$W_{1}=\frac{1}{2} C\left(50^{2}-40^{2}\right)=\frac{900}{2} C$
$W_{1}=\frac{900}{2} \cdot \frac{\mathrm{~W}}{600}=\frac{3}{4} \mathrm{~W}$

Q. 47 (4)

As battery is disconnected, charge remains constant in the work process.
Work done $=$ final potential energy - initial potential energy
$=\frac{Q^{2}}{2 C^{\prime}}-\frac{Q^{2}}{2 C}$
$=\frac{Q^{2}}{2}\left\{\frac{1}{C^{\prime}}-\frac{1}{C}\right\}$
Where, $Q=C V=\frac{A \epsilon_{0} V}{d}, C=\frac{A \epsilon_{0}}{d} \& C^{\prime}=\frac{A \epsilon_{0}}{2 d}$

Now, work done $=\frac{\in_{0} A V^{2}}{2 d}$
Q. 48 (1)

Initially
$\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \times 0.5 \times 10^{-6} \times 10^{4}=0.25 \times 10^{-2} \mathrm{~J}$
When the $0.5 \mu \mathrm{~F}$ capacitor is connected to an uncharged capacitor let the common potential is V .
$0.5 \times 100=0.7 \mathrm{~V}$
$V=\frac{0.5 \times 100}{0.7}=\frac{500}{7} \mathrm{Volt}$
$\mathrm{U}_{\mathrm{f}}=\frac{1}{2} \times 0.7 \times 10^{-6} \times \frac{500}{7} \times \frac{500}{7}$
$=1.78 \times 10^{-3} \mathrm{~J}$
Loss $=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=0.72 \times 10^{-3} \mathrm{~J}$

Q. 49 (3)

Total charge $=4 \mathrm{CV}-\mathrm{CV}=3 \mathrm{CV}$
Now, let it is distributed as shown, potential across the capacitors is same

So, $\frac{q}{2 C}=\frac{3 C V-q}{C} \quad \Rightarrow q=2 C V$

Total potential energy $=\frac{Q_{1}^{2}}{2 C_{1}}+\frac{Q_{2}^{2}}{2 C_{2}}=\frac{C^{2} V^{2}}{2 C}+$ $\frac{4 C^{2} V^{2}}{2 \times 2 C}=\frac{3 C V^{2}}{2}$
Q. 50

Before connection
$\mathrm{Q}_{1}=2 \times 10=20, \mathrm{Q}_{2}=4 \times 20=80$
$\mathrm{U}_{\mathrm{i}}=\frac{1}{2} 2(10)^{2}+\frac{1}{2} 4(20)^{2}=900 \mathrm{~J}$
Since connected as shown
After $\mathrm{Q}_{\text {net }}=-20+80$
Connection $=60$
$\mathrm{V}=\frac{60}{2+4}=10$ Volt
$\mathrm{U}_{\mathrm{f}}=\frac{1}{2} 6(10)^{2}=300 \mathrm{~J}$
Heat generated $=-U_{f}+U_{i}=600 \mathrm{~J}$

Q. 51 (3)

$$
\begin{aligned}
& \mathrm{V}_{1}: \mathrm{V}_{2}=\frac{1}{3}: \frac{1}{6}=2: 1 \\
& \mathrm{~V}_{2}=\frac{1}{3} \times 24=8
\end{aligned}
$$

$$
\mathrm{E}=\frac{1}{2}(1)(8)^{2}=32 \mu \mathrm{~J}
$$

Q. 52 (1)

Initially

After closing key first and third plate come at same potential.

$\mathrm{E}_{1} \times 2 \mathrm{~d}=\mathrm{E}_{2} \times \mathrm{d}$
$E_{1}=\frac{\sigma_{1}}{\epsilon_{0}}, V_{1}-V=\frac{\sigma_{1}}{\epsilon_{0}} 2 \mathrm{~d}=\frac{\sigma_{2}}{\epsilon_{0}} \mathrm{~d}$
$2 \sigma_{1}=\sigma_{2}$
$2 \mathrm{Q}_{1}=\mathrm{Q}_{2}$
$\mathrm{Q}_{1}+\mathrm{Q}_{2}=2 \mathrm{Q}$
$\Rightarrow 3 \mathrm{Q}_{1}=2 \mathrm{Q} \Rightarrow \mathrm{Q}_{1}=\frac{2 \mathrm{Q}}{3}$ and $\mathrm{Q}_{2}=\frac{4 \mathrm{Q}}{3}$
$1.5 \mathrm{Q}\left|\begin{array}{l|l|} \\ -4 \mathrm{Q} / 3 \\ 4 \mathrm{Q} / 3 & 2 \mathrm{Q} / 3 \\ -2 \mathrm{Q} / 3\end{array}\right| 1.5 \mathrm{Q}$
Initial charge on third plate $=0$
Final Charge $=\frac{3 Q}{2}-\frac{2 Q}{3}=\frac{5 Q}{6}$
\therefore Charge flown $=\frac{5 Q}{6}$
Q. 53

$\mathrm{C}=\frac{\in_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{8.85 \times 10^{-12} \times 0.1 \mathrm{~m}^{2}}{0.885 \times 10^{-3}}=1 \times 10^{-9} \mathrm{~F}$
Energy stored $=\frac{1}{2}\left(C_{1}+C_{2}\right) V^{2}=10^{-9} \times 100=10^{-7}$
Joule
$\frac{1}{2}$ Ceq. $\mathrm{V}^{2}=\frac{1}{2} 2 \mathrm{CV}^{2}$

Q. 54 (2)

$C^{\prime}=\frac{\in_{0} A}{d / 2}=\frac{2 \epsilon_{0} A}{d}=2 C$.
Q. 55 (3)

Q = constant
New capacitance $=$ KC (increases)
$\mathrm{V}^{\prime}=\frac{\mathrm{V}}{\mathrm{K}}$ (decreases)
$U^{\prime}=\frac{Q^{2}}{2 C K}$ (decreases)
$\mathrm{E}=\frac{\mathrm{Q}}{\mathrm{A} \in_{0}} \Rightarrow \mathrm{E}^{\prime}=\frac{\mathrm{Q}}{\mathrm{KA} \in_{0}}$ (decreases)
Q. 56 (1)
$\mathrm{V}_{\mathrm{C}_{2}}=\mathrm{V}_{\mathrm{C}_{2}}=\mathrm{V}$
$\mathrm{C}_{1}=\mathrm{C}$
$\mathrm{C}_{2}=\mathrm{KC}$
$\mathrm{q}_{1}=\mathrm{C}_{1} \mathrm{~V}_{\mathrm{C}_{1}}=\mathrm{CV}$
$\mathrm{q}_{2}=\mathrm{C}_{2} \mathrm{~V}_{\mathrm{C}_{2}}=\mathrm{KCV}$
$\mathrm{q}_{1}<\mathrm{q}_{2}$.
Q. 57 (3)

4V
Here, Potential difference on the capacitor will depend on emf of battery i.e., 4 V
Q. 58 (1)

Charge or battery $=\mathrm{Q}=\mathrm{CV}=4 \mathrm{C}$
Now charge remains same, as battery is disconnected new capacitance $=\mathrm{C}^{\prime}=\mathrm{KC}=8 \mathrm{C}$
$\mathrm{C}^{\prime} \mathrm{V}^{\prime}=\mathrm{Q}$
$V^{\prime}=\frac{Q}{C^{\prime}}=\frac{4 C}{8 C}=\frac{1}{2} V$
Q. 59 (1)
$\mathrm{U}_{0}=\frac{1}{2} C V^{2}$ (given)

Now energy $=U^{\prime}=\frac{1}{2} C^{\prime} V^{2}$
$C^{\prime}=C K$
$U^{\prime}=\frac{1}{2} C V^{2} K=U_{0} K$
Q. 60 (3)

Now, charge remains same on the plates.
$\mathrm{U}_{0}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}$ (given)
Now energy $=U^{\prime}=\frac{Q^{2}}{2 C^{\prime}}=\frac{Q^{2}}{2 C K}=\frac{U_{0}}{K}$
Q. 61 (3)

The charge stored in the capacitor before and after the dielectric is inserted is same so
$\mathrm{Q}_{\mathrm{i}}=\mathrm{CV}$
$\mathrm{Q}_{\mathrm{f}}=(\mathrm{KC})\left(\frac{\mathrm{V}}{8}\right)$
$\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{\mathrm{f}}$
Hence $\mathrm{CV}=\frac{\mathrm{KCV}}{8} ; \quad \mathrm{K}=8$
Q. 62 (3)

For metal $\mathrm{k}=\infty$
Hence from formula.
$C_{e q}=\frac{\epsilon_{o A}}{d-t+t / k}$
$C=\frac{\epsilon_{0} A}{(d-t)}$
Q. 63 (3)
$\mathrm{V}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}} \mathrm{d}=\frac{\sigma}{\epsilon_{0}} \mathrm{~d}=3000$
$\mathrm{V}_{\mathrm{f}}=\mathrm{E}_{\mathrm{f}} \mathrm{d}=\frac{\sigma}{\epsilon} \mathrm{d}=1000$
$\Rightarrow \frac{\epsilon}{\epsilon_{0}}=3 \Rightarrow \epsilon=3 \epsilon_{0}=27 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$

Q. 64 (2)

$$
\mathrm{C}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}-\mathrm{t}+\frac{\mathrm{t}}{\mathrm{k}}}
$$

Now $\frac{\epsilon_{0} A}{d-t+\frac{t}{k}}=\frac{3}{2} \frac{\epsilon_{0} A}{d}$

$$
\left(d-\frac{t}{2}\right)=\frac{2 d}{3} \Rightarrow \frac{t}{d}=\frac{2}{3}
$$

Q. 65 (1)
$\mathrm{V}_{\text {max }}=\mathrm{E}_{\text {max }} \mathrm{d}_{\text {max }}=4000$
$\mathrm{d}=\frac{4000}{18 \times 10^{6}}$
Now, $\mathrm{C}=\frac{\in_{0} \mathrm{KA}_{\text {min }}}{\mathrm{d}_{\max }}=7 \times 10^{-2} \mu \mathrm{f}$
$\mathrm{A}=\frac{7 \times 10^{-2} \times 10^{-6} \times 4000}{8.85 \times 10^{-12} \times 2.8 \times 18 \times 10^{6}}=0.63 \mathrm{~m}^{2}$
Q. 66 (2)

Initially $\mathrm{C}_{\mathrm{eq}}=\frac{\mathrm{C}}{2}$
So, $\mathrm{Q}_{1}=\mathrm{C}_{\mathrm{eq}} \mathrm{V}=\frac{\mathrm{C}}{2} \mathrm{E}$
Finally $\mathrm{C}_{\mathrm{eq}}=\frac{\mathrm{C}(\mathrm{KC})}{\mathrm{C}+\mathrm{CK}}=\frac{\mathrm{KC}}{1+\mathrm{K}}$
So, $\mathrm{Q}_{2}=\mathrm{C}_{\mathrm{eq}}^{\prime} \mathrm{E}=\frac{\mathrm{KCE}}{1+\mathrm{K}}$
So, change flow throw battery $=Q_{2}-Q_{1}$
$\Delta \mathrm{q}=\mathrm{CE}\left[\frac{\mathrm{K}}{1+\mathrm{K}}-\frac{1}{2}\right]$
$\Delta q=\frac{C E(K-1)}{2(1+K)}$
Q. 67
(1)

Charge on capacitor $\mathrm{Q}=\mathrm{CV}=\frac{\in_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{~V}$
Initial energy $=\frac{1}{2} \mathrm{CV}^{2}=\frac{\epsilon_{0} \mathrm{~A}}{2 \mathrm{~d}} \mathrm{~V}^{2}$
Final energy $=\frac{\mathrm{Q}^{2}}{2 \mathrm{CK}}=\frac{\mathrm{C}^{2} \mathrm{~V}^{2}}{2 \mathrm{CK}}=\frac{1}{2} \frac{\mathrm{CV}^{2}}{\mathrm{~K}}$
So,
work done $=[$ Final energy - Initial energy $]$
$=\frac{1}{2} \mathrm{CV}^{2}\left[\frac{1}{\mathrm{~K}}-1\right]=\frac{\in_{0} \mathrm{AV}^{2}}{2 \mathrm{~d}}\left[\frac{1}{\mathrm{~K}}-1\right]$

Q. 68 (3)

$\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\mathrm{K}$

$C_{\text {eq }}=\frac{K C}{K+1}$

$\mathrm{Q}_{2}=\mathrm{C}_{\mathrm{eq}} \mathrm{V}=\frac{\mathrm{KCE}}{\mathrm{K}+1}, \mathrm{Q}_{2}{ }^{\prime}=\mathrm{EC} / 2$
$\frac{\mathrm{Q}_{2}^{\prime}}{\mathrm{Q}_{2}}=\frac{\mathrm{EC}}{2\left(\frac{\mathrm{KCE}}{\mathrm{K}+1}\right)}=(\mathrm{K}+1) / 2 \mathrm{~K}$

Q. 69 (3)

As the potential difference is constant hence we can say that $\mathrm{Q}_{1}=60 \mu \mathrm{C}=\mathrm{V} \times \mathrm{C}$
Now there is already $60 \mu \mathrm{C}$ on the capacitor.
More $120 \mu \mathrm{C}$ charge flows from battery. Hence net charge on capacitor is
$\mathrm{Q}_{2}=180 \mu \mathrm{C}=\mathrm{V} \times \mathrm{KC}$
(2) $/(1) \Rightarrow 3=K$
Q. 70 (3)
$\begin{aligned} U_{i} & =\frac{1}{2} \frac{\left(60 \times 10^{-6}\right)^{2}}{2 \times 10^{-6}} \\ & =900 \times 10^{-6} \mathrm{~J}\end{aligned}$

$$
\begin{aligned}
\mathrm{U}_{\mathrm{f}} & =\frac{1}{2} \frac{\left(180 \times 10^{-6}\right)^{2}}{3 \times 2 \times 10^{-6}} \\
& =\frac{180 \times 180 \times 10^{-6}}{6 \times 2}=2700 \times 10^{-6} \mathrm{~J}
\end{aligned}
$$

$\mathrm{V}=30$ volts
Heat produced $=1800 \times 10^{-6} \mathrm{~J}$

Q. 71 (2)

Charge on $15 \mu \mathrm{~F}$ capacitor $\mathrm{A}=1500 \mu \mathrm{C}$.
Charge on capacitor $\mathrm{B}=100 \mu \mathrm{C}$.
When they are connected with dielectric removed from A the capacitor.
Capacitance of A now becomes $1 \mu \mathrm{~F}$.
$C_{i}=\frac{\varepsilon_{0} A .15}{d}=15 \mathrm{C}=15 \mu \mathrm{~F}$,
$\mathrm{C}_{\mathrm{f}}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{C}=1 \mu \mathrm{~F}$

Q remains constant
$\mathrm{Q}_{\text {net }}=\mathrm{C}_{\mathrm{eq}} \times \mathrm{V}_{\text {common }}$
$1500+100=2 \mathrm{~V}$
$\mathrm{V}=800$ Volt

Q. 72 (4)

Initially

$\mathrm{C}_{\mathrm{eq}}^{\mathrm{n}}=\frac{\mathrm{C}}{2}$
$C_{e q}^{n}=\frac{C K}{K+1}$
$q_{i}=\frac{C E}{2}$
$q_{f}=\frac{C E K}{K+1}$
$q_{f}-q_{i}=q_{\text {flown }}=\frac{C E K}{K+1}-\frac{C E}{2}$
$=\frac{C E(K-1)}{2(K+1)}$

So charge flows from C to B .

Initially $E=\frac{\sigma}{\epsilon_{0}}=\frac{q}{A \epsilon_{0}}$
$=200 \times 10^{2} \mathrm{~V} / \mathrm{m}$

$\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{V}}=\frac{\mathrm{Q}}{\mathrm{E} . \mathrm{d}}$
$C=\frac{Q}{200 \times 10^{2} \times 0.05}$
....... (1)
In final situation
charge remains uncharged
$\mathrm{C}^{\prime}=\frac{\mathrm{Q}}{\mathrm{V}^{\prime}}$
....... (2)
From (1) \& (2)

$$
\begin{aligned}
& \frac{\epsilon_{0} \mathrm{~A}}{3 \times 10^{-2}} \mathrm{~V}=\frac{\epsilon_{0} \mathrm{~A}}{5 \times 10^{-2}} \times 200 \times 10^{2} \times 0.05 \\
& \mathrm{~V}=3 \times 10^{-2} \times 200 \times 10^{2} \\
& =600 \mathrm{~V}
\end{aligned}
$$

The two capacitance $\mathrm{C}_{1} \& \mathrm{C}_{2}$ behave as a series arrangment as both the capacitors have equal charge on them
$C_{1}=\epsilon_{0} \frac{\mathrm{AK}_{1}}{\mathrm{~d} / 2}$
$C_{2}=\epsilon_{0} \frac{A K_{2}}{d / 2}$
$C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
$=\frac{\frac{\varepsilon_{0} A K_{1}}{d / 2} \times \frac{\varepsilon_{0} A K_{2}}{d / 2}}{\left(\frac{\varepsilon_{0} A K_{1}}{d / 2}\right)+\left(\frac{\varepsilon_{0} A K_{2}}{d / 2}\right)}=\frac{2 \varepsilon_{0} A}{d}\left(\frac{K_{1} K_{2}}{\mathrm{~K}_{1}+K_{2}}\right)$
Q. 75 (2)

Initially
$C=2.5=\frac{\varepsilon_{0} A}{d}$
The two capacitanes act as a paralllel connection

$$
C^{\prime}=\frac{\varepsilon_{0} A / 2}{d}+\frac{K \varepsilon_{0} A / 2}{d}
$$

$$
5 \mu \mathrm{~F}=\frac{\varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}}+\frac{\mathrm{K} \varepsilon_{0} \mathrm{~A}}{2 \mathrm{~d}}
$$

$$
5=\frac{2.5}{2}+K \frac{2.5}{2}
$$

$$
\frac{10}{2.5}=\mathrm{K}+1 \Rightarrow \mathrm{~K}=3
$$

Q. 76 (2)

We can express this arrangement as circuit

When equivalent capacitance is calculated between 1 \& 3 then

$$
\mathrm{C}_{1}=\frac{2 \mathrm{C}}{3}+\mathrm{C}=\frac{5 \mathrm{C}}{3}
$$

When equivalent capacitance calculated between 2 \&
4.

Hence $\mathrm{C}_{2}=\frac{2 \mathrm{C}}{3}+\mathrm{C}=\frac{5 \mathrm{C}}{3}$
So $\mathrm{C}_{1}: \mathrm{C}_{2}$ equal to $1: 1$.
Q. 77 (3)

Charge on capacitor $=\mathrm{CV}=$ capacitance \times (voltage across it)
In steady state, there will be no current through capacitor.

voltage across capacitor $\mathrm{V}=\mathrm{iR}_{2}=\frac{E R_{2}}{\mathrm{R}_{2}+\mathrm{r}}$
Charge on capacitor $=\mathrm{CiR}_{2}=\frac{\mathrm{CER}_{2}}{\mathrm{R}_{2}+\mathrm{r}}$
Q. 78 (3)

If S_{1} is closed and S_{2} is open then, condenser C is fully charged at potential V .
Q. 79 (4)

Charge on each capacitor will be same. In steady state current through capacitor will be zero

current in steady state $=\mathrm{i}=\frac{10}{5}=2 \mathrm{amp}$
potential across $\mathrm{AB}=\mathrm{iR}=2 \times 4=8 \mathrm{~V}$.
Potential across each capacitor $=4 \mathrm{~V}$ on each plate $\mathrm{Q}=\mathrm{CV}=3 \times 4=12 \mu \mathrm{C}$
Q. 80 (3)
$\mathrm{q}=\frac{\mathrm{q}_{1}}{2}=\frac{8 \times 10^{-6} \times 10}{2}\left(1-\mathrm{e}^{-\frac{0.16 \times 10^{-6} \times 20}{8 \times 20}}\right)$
$\mathrm{q}=40\left(1-\mathrm{e}^{-1}\right) \mu \mathrm{C}=40(1-0.37)=25.2 \mu \mathrm{C}$
Q. 85 (1)
Q. 81 (2)

For capacitors in series $C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
As $\mathrm{C}_{1}=\mathrm{C}_{2} \ldots \ldots \ldots \ldots \ldots \ldots . .=\mathrm{C}_{\mathrm{n}}$ hence

$$
\mathrm{C}_{\mathrm{eq}}=\frac{\mathrm{C}}{\mathrm{n}}
$$

For capacitors in parallel

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots \ldots \ldots \ldots \ldots . \mathrm{C}_{\mathrm{n}} \\
& \mathrm{C}_{\mathrm{eq}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots \ldots \ldots \ldots . \\
& =\frac{1}{1-\frac{1}{2}}=2 \mu \mathrm{~F}
\end{aligned}
$$

Q. 82 (3)

By dividing protential across $6 \mu \mathrm{~F} \& 2 \mu \mathrm{~F}$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{6 \mu \mathrm{f}}=\frac{100}{(6+2)} \times 2$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{6 \mu \mathrm{f}}=25 \mathrm{~V}$
Now, $\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{2 \mu \mathrm{f}}=100-25=75$ Volt
Q. 83 (4)

After steady state capacitor acts as an open circuit.
Q. 84 (3)

After steady state capacitor acts as an open circuit.

$\mathrm{R}_{\mathrm{eq}}=5 \Omega$
$\mathrm{i}=\frac{15}{5}=3 \mathrm{~A}$
Hence potential across capacitor is 12 volt.

In steady state $\mathrm{i}_{1}=0$
So $i_{2}=i_{3}=\frac{2}{10+20}=\frac{1}{15}$ Amp.
Q. 86 (1)

In steady state $i_{1}=0$
So $i_{2}=i_{3}=\frac{2}{10+20}=\frac{1}{15}$ Amp.
So $\mathrm{V}_{\mathrm{C}}=\mathrm{i}_{2} \times 10=\frac{2}{3}$ Volt $=\mathrm{Q} / \mathrm{c}$
$\mathrm{Q}=\frac{2}{3} \times 6=4 \mu \mathrm{C}$
Q. 87 (4)
$\mathrm{V}=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
$\frac{\mathrm{V}_{\mathrm{o}}}{2}=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
$\frac{1}{2}=\mathrm{e}^{-\mathrm{t} / 10 \times 10^{6} \times 0.1 \times 10^{-6}}$
$\mathrm{e}^{\mathrm{t}}=2$
$\mathrm{t}=\ln 2=0.693 \mathrm{se}$
Q. 88 (2)

As $\mathrm{E}=\frac{\sigma}{\epsilon_{0}}$
And given that $\frac{E_{i}}{E_{f}}=3 \Rightarrow \frac{\sigma_{i}}{\sigma_{f}}=3$
$\sigma_{i}=\frac{Q_{0}}{A}=3 \frac{Q_{f}}{A}$
$\Rightarrow \mathrm{Q}_{0}=3 \mathrm{Q}_{\mathrm{f}}$ Now $\mathrm{Q}_{\mathrm{f}}=\mathrm{Q}_{0} \mathrm{e}^{-\mathrm{t} / R \mathrm{C}}$
$\frac{\mathrm{Q}_{0}}{3}=\mathrm{Q}_{0} \mathrm{e}^{-4.4 / 2 \mathrm{R}, 3}=\mathrm{e}^{2.2 / \mathrm{R}}$
$\Rightarrow R=\frac{2.2}{\ln 3} \Omega=2.0 \Omega$
Q. 89 (1)
$\mathrm{Q}=\mathrm{Q}_{0} \mathrm{e}^{-t / R C}$
$\mathrm{Q}=\left[20 \mathrm{e}^{-\mathrm{t} / 5 \times 5}\right] \mu \mathrm{C}$
Here t is in $\mu \mathrm{s}$.
Now,
$\mathrm{Q}_{25}=20 \mathrm{e}^{-25 / 25}=\frac{20}{\mathrm{e}} \mu \mathrm{C}$
$\mathrm{Q}_{50}=\frac{20}{\mathrm{e}^{2}} \mu \mathrm{C}$
so, Heat = [Initial energy -Final energy] of capacitance
$=\frac{1}{2 \mathrm{C}}\left[\mathrm{Q}_{25}^{2}-\mathrm{Q}_{50}^{2}\right]=\frac{50}{\mathrm{e}^{2}}\left[1-\frac{1}{\mathrm{e}^{2}}\right] \mu \mathrm{J}=4.7 \mu \mathrm{~J}$

Q. 90 (1)

We know that
$\mathrm{i}=\mathrm{i}_{0} \mathrm{e}^{-\mathrm{t} / \mathrm{R} \mathrm{eq}^{\mathrm{C}}} \Rightarrow \mathrm{i}=\mathrm{i}_{0} / 2$
$\frac{1}{2}=\mathrm{e}^{-\frac{(\ln 2) 10^{-6}}{\mathrm{R}_{\text {eq }} \times 0.0 \times 10^{-6}}}$
$\ln 2=\ln 2 / \mathrm{R}_{\text {eq }} \times 0.5$
$\Rightarrow R_{A}+R=2$
$\mathrm{R}_{\mathrm{A}}=0$

Q. 91 (4)

To calculate charge on capacitor consider that capacitor acts as open circuit when completely charged and calculate drop across it which comes out to be 3 V .
When s is opened i.e. discharging circuit

Q. 92 (3)

Steps to calculate time constant.
Replace battery by simple wire to find R_{eq}.
Apply formula $\Rightarrow \tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}$.
$\frac{3 R}{4}+R=\frac{7 R}{4}=R_{\text {eq }}$
Q. 93 (2)
$i_{1}=\frac{V}{R} e^{-t / R C_{1}}, i_{2}=\frac{V}{R} e^{-t / R C_{2}}$

$$
\frac{i_{1}}{i_{2}}=e^{-t / R}\left(\frac{1}{C_{1}}-\frac{1}{C_{2}}\right)=e^{-t / R}\left(\frac{\mathrm{C}_{2}-2 \mathrm{C}_{2}}{2 \mathrm{C}_{2}^{2}}\right)=\mathrm{e}^{\frac{\mathrm{t}}{2 \mathrm{RC}_{2}}}
$$

With increase in time i_{1} / i_{2} also increases.
Q. 94 (4)

Initally the capacitor acts a closed circuit
$\mathrm{i}=\frac{2}{1000}=2 \mathrm{~mA}$
After steady state capacitor acts as an open circuit $\mathrm{i}=$
$\frac{2}{2000}=1 \mathrm{~mA}$
at $\mathrm{t}=0, \mathrm{I}=2 \mathrm{~mA}$ and at $\mathrm{t}=\infty \Rightarrow \mathrm{I}=1 \mathrm{~mA}$
Q. 95 (2)

The energy dissipated in the 10Ω resistor is equal to initial energy stored is capacitor
$3.6 \times 10^{-3}=\frac{\mathrm{Q}^{2}}{2 \times 2 \times 10^{-6}}$
$\mathrm{Q}=120 \mu \mathrm{C}$

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1 (B)
$\mathrm{x}=\mathrm{Vt}, \Rightarrow \mathrm{d} \propto \mathrm{t}$
$\mathrm{C}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{Vt}}$
$\frac{\mathrm{dc}}{\mathrm{dt}}=-\frac{\in_{0} \mathrm{~A}}{\mathrm{~V}} \frac{1}{\mathrm{t}^{2}}$
$\frac{\mathrm{dc}}{\mathrm{dt}} \propto \frac{1}{\mathrm{~d}^{2}}$
Q. 2 (B)

$$
\mathrm{C}_{\text {eq. }}=\frac{\mathrm{C}}{2}+\frac{\mathrm{C}}{2}=\mathrm{C}=\frac{\in_{0} \mathrm{~A}}{\mathrm{~d}}
$$

Q. 3 (A)
$\mathrm{C}_{1}=4 \pi \varepsilon_{0} \mathrm{a}$

$$
\begin{aligned}
& \mathrm{C}_{\text {final }}=\frac{4 \pi \varepsilon_{0} \mathrm{ab}}{\mathrm{~b}-\mathrm{a}} \\
& =\frac{4 \pi \varepsilon_{0} \mathrm{ab}}{\mathrm{~b}\left(1-\frac{\mathrm{a}}{\mathrm{~b}}\right)}=\frac{4 \pi \varepsilon_{0} \mathrm{a}}{\left[1-\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)\right]} \frac{\mathrm{a}}{\mathrm{a}}=\frac{\mathrm{n}}{\mathrm{n}-1} \\
& =\mathrm{n} 4 \pi \varepsilon_{0} \mathrm{a}=\mathrm{nc}_{1}
\end{aligned}
$$

Q. 4 (B)

$\mathrm{C}=\frac{2 \pi \epsilon_{0}}{\ell \mathrm{nb} / \mathrm{a}}=\frac{2 \pi \epsilon_{0}}{\operatorname{\ell n} 2 \mathrm{R} / \mathrm{R}}+\frac{2 \pi \epsilon_{0}}{\operatorname{\ell n} \frac{2 \sqrt{2}}{2 \mathrm{R}} \mathrm{R}}$
$=\frac{2 \pi \epsilon_{0}}{\ell \ln 2}[1+2]=\frac{6 \pi \epsilon_{0}}{\ell \ln 2}$
Q. 5 (A)

Due to symmetric charge distribution as shown for loop ACDB
$\mathrm{V}_{\mathrm{A}}-\frac{\mathrm{q}}{3 \mathrm{C}}-\frac{\mathrm{q}}{6 \mathrm{C}}-\frac{\mathrm{q}}{3 \mathrm{C}}=\mathrm{V}_{\mathrm{B}} \Rightarrow \mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=\frac{5 \mathrm{q}}{6 \mathrm{C}} \Rightarrow \mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$
$=\frac{\mathrm{q}}{\mathrm{C}_{\mathrm{eq}}} \Rightarrow \mathrm{C}_{\mathrm{eq}}=\frac{6 \mathrm{C}}{5}$
Q. 6 (D)

Theoritical capacitance $=\infty$, because d become zero
Q. 7 (B)

Charge on $\mathrm{C}_{0}, \mathrm{Q}_{1}=\mathrm{C}_{0} \mathrm{~V}_{0}$,
Initial charge on $\mathrm{C}_{1}, \mathrm{Q}_{2}=0$
Common potential $\mathrm{V}_{1}=\frac{\mathrm{Q}_{1}+\mathrm{Q}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\frac{\mathrm{C}_{0} \mathrm{~V}_{0}}{\mathrm{C}+\mathrm{C}_{0}} \Rightarrow \mathrm{Q}_{1}=$
$\mathrm{C}_{0} \mathrm{~V}_{1}=\frac{\mathrm{C}_{0}^{2}}{\mathrm{C}+\mathrm{C}_{0}} \mathrm{~V}_{0}$

Similarly $\mathrm{V}_{2}=\frac{\mathrm{C}_{0} \mathrm{~V}_{1}}{\mathrm{C}+\mathrm{C}_{0}}=\left(\frac{\mathrm{C}_{0}}{\mathrm{C}+\mathrm{C}_{0}}\right)^{2} \mathrm{~V}_{0} \Rightarrow \mathrm{Q}_{2}=\mathrm{C}_{0} \mathrm{~V}_{2}$
$=\frac{\mathrm{C}_{0}^{3}}{\left(\mathrm{C}+\mathrm{C}_{0}\right)^{2}} \mathrm{~V}_{0}$
for n times $\mathrm{V}_{\mathrm{n}}=\left(\frac{\mathrm{C}_{0}}{\mathrm{C}+\mathrm{C}_{0}}\right)^{\mathrm{n}} \mathrm{V}_{0}=\mathrm{V}$
$\Rightarrow \mathrm{C}=\left[\left(\frac{\mathrm{V}_{0}}{\mathrm{~V}}\right)^{1 / \mathrm{n}}-1\right] \mathrm{C}_{0}$
Q. 8 (D)

$\mathrm{V}=\frac{\mathrm{Q}_{1}+\mathrm{Q}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\frac{900+400}{3+2}=260 \mathrm{~V}$

Q. 9 (A)

$\mathrm{V}=\frac{\mathrm{Q}_{1}+\mathrm{Q}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\frac{900-400}{3+2}=100 \mathrm{~V}$
Charge on $3 \mu \mathrm{~F}=\mathrm{C}_{1} \mathrm{~V}=300 \mu \mathrm{C}$
amount of charge flow is $=900 \mu \mathrm{C}-300 \mu \mathrm{C}=600 \mu \mathrm{C}$ $=6 \times 10^{-4} \mathrm{C}$
Q. 10 (B)

In series charge will be same

$$
\begin{aligned}
& 12-\frac{\mathrm{q}}{8}+6-\frac{\mathrm{q}}{4}=0 \\
& \mathrm{q}=48 \mu \mathrm{C} \\
& \mathrm{~V}_{\mathrm{C}_{2}}=\frac{48}{8}=6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{C}_{1}}=\frac{48}{4}=12 \mathrm{~V}
\end{aligned}
$$

Q. 11 (A)

$$
\begin{aligned}
& C_{a c}=6+6=12 \mu \mathrm{~F} \\
& \mathrm{C}_{\mathrm{cb}}=2\left(\frac{6.3}{6+3}\right)+2=6 \mu \mathrm{~F}
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{eq}}=\frac{12 \times 6}{12+6}=4 \mu \mathrm{~F}
$$

Q. 12 (D)

$$
\begin{aligned}
& \text { Charge on } 2 \mu \mathrm{~F} \text { capacitor } \\
& \Rightarrow \mathrm{Q}=\mathrm{CV} \\
& \mathrm{Q}=2 \times 32=64 \mu \mathrm{C}
\end{aligned}
$$

Q. 13 (D)

Electric field remains constant but $\mathrm{d} \uparrow \therefore \mathrm{V} \uparrow$
Q. 14 (C)

$$
\frac{\mathrm{Q}}{2} \left\lvert\, \begin{array}{cc}
\mathrm{CV} \\
\mathrm{~V}+\frac{\mathrm{Q}}{2 \mathrm{C}} & \left.-\mathrm{CV}-\frac{\mathrm{Q}}{2} \right\rvert\, \frac{\mathrm{Q}}{2}
\end{array}\right.
$$

Q. 15 (A)
$\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{C}}$

$\therefore \mathrm{Q}-\mathrm{q}=\frac{2 \mathrm{Q}}{3} \quad \frac{\mathrm{Q}-\mathrm{q}}{\mathrm{C}}=\frac{\mathrm{q}}{2 \mathrm{C}}$

$$
2 \mathrm{Q}=3 \mathrm{q}
$$

$$
q=\frac{2 Q}{3}
$$

$$
\therefore \frac{\mathrm{Q}}{3^{N}}
$$

Q. 16 (D)

Correct statement
C_{1} and C_{2} are parallel So, $\mathrm{V}_{1}=\mathrm{V}_{2}$
$\mathrm{C}_{1}=\mathrm{C}_{2}$ and $\mathrm{V}_{1}=\mathrm{V}_{2} \Rightarrow \mathrm{Q}_{1}=\mathrm{Q}_{2}$
Initial change $Q_{0}=C V$
Now, $\mathrm{Q}_{1}=\mathrm{CV}, \mathrm{Q}_{2}=\mathrm{CV}$
$\Rightarrow \mathrm{Q}_{0}=\frac{\mathrm{Q}_{1}+\mathrm{Q}_{2}}{2}$
Initial energy $\mathrm{U}_{0}=\frac{1}{2} \mathrm{CV}^{2}=\mathrm{U}_{1}=\mathrm{U}_{2}$
$\begin{aligned} \operatorname{ButU}_{1}+\mathrm{U}_{2} & \neq \mathrm{U}_{0} \\ \mathrm{U}_{1}+\mathrm{U}_{2} & =\mathrm{CV}^{2}\end{aligned}$
Q. 17 (B)

Negative W.D. by external agent
Energy $=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}} \downarrow$
Q. 18 (B)

Heat $=6 \mathrm{CV}^{2}-\left\{\frac{1}{2} \mathrm{C}(2 \mathrm{~V})^{2}-\frac{1}{2} \mathrm{CV}^{2}\right\}$
Q. 19 (B)

$\mathrm{Q}=$ const.

Energy $=\frac{Q^{2}}{2 C}=v_{i}$
$\mathrm{U}_{\mathrm{f}}=\downarrow ; \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}} \downarrow$
$\varepsilon=\frac{\mathrm{V}}{\mathrm{d}} \downarrow$
Q. 20 (A)

After insertion the slab C \uparrow
but battery is still connected $\mathrm{V}=\mathrm{V}_{0}$
$\mathrm{Q}>\mathrm{Q}_{0}$
$\varepsilon=\frac{\mathrm{V}}{\mathrm{d}}=$ const.
$\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}=$ const.
Q. 21 (B)

Case - I When dielectric slab of dielectric constant K enters in to the capacitor.

At any time t, there will be two capacitors are in parallel combination - one with air and other with dielectric slab.
$C(t)=C_{\text {air }}+\mathrm{C}_{\text {slab }}$
$=\frac{\epsilon_{0} \mathrm{~A}(\mathrm{~L}-\mathrm{Vt})}{\mathrm{Ld}}+\frac{\mathrm{K} \epsilon_{0} \mathrm{~A}(\mathrm{Vt})}{\mathrm{Ld}}$
$=\frac{\epsilon_{0} A}{L d}[L-(K-1) V t]$ (linear function of $\left.t\right)$
its slope $=M C(t)=\frac{\epsilon_{0} A}{L d}(K-1) V$
Case - II When dielectric slab of dielectric constant 2 K also enters into the capacitor.

$$
\begin{aligned}
& \mathrm{C}^{\prime}(\mathrm{t})=\mathrm{C}_{\text {slab } 1}+\mathrm{C}_{\text {slab } 2} \\
& =\frac{\epsilon_{0} \mathrm{AK}(\mathrm{~L}-\mathrm{Vt})}{\mathrm{Ld}}+\frac{\epsilon_{0} \mathrm{~A} 2 \mathrm{KVt}}{\mathrm{Ld}}
\end{aligned}
$$

$$
=\frac{\mathrm{K} \epsilon_{0} \mathrm{~A}}{\mathrm{Ld}}[\mathrm{~L}+\mathrm{Vt}] \quad \text { (linear function of } \mathrm{t} \text {) }
$$

Its slope $=\mathrm{C}^{\prime}(\mathrm{t})=\frac{\epsilon_{0} \mathrm{AKV}}{\mathrm{Ld}}$
$\Rightarrow \mathrm{C}^{\prime}(\mathrm{t})>\mathrm{C}(\mathrm{t})$
and both $C(t)$ and $C^{\prime}(t)$ are linear function of ' t ' hence variation of capacitance with time be best represented by (B)

Q. 22 (B)

Electric field between two plates of capacitor is given
by $\frac{\sigma}{\mathrm{K} \in_{0}}$

When $K=1$ then $E=\frac{\sigma}{\epsilon_{0}}$
then $K=K$ then $E=\frac{\sigma}{K \epsilon_{0}}$
When $\mathrm{K}=\infty$ then $\mathrm{E}=0$. From the formula $\mathrm{V}=\mathrm{E}$. d.
Now positive plate at $x=0$ is at higher potential and potential drops linearly as E is constant.
But as E is the slope of potential v/s distance curve hence inside the dielectric as E decreases hence slope of $\mathrm{v} / \mathrm{s} \mathrm{x}$ curve for the interval $\mathrm{x}=3 \mathrm{~d}$ to $\mathrm{x}=4 \mathrm{~d}$ also decreases.

Q. 23 (A)

Electric field between two plates of capacitor is given
by $\frac{\sigma}{\mathrm{K} \epsilon_{0}}$

When $K=1$ then $E=\frac{\sigma}{\epsilon_{0}}$
then $\mathrm{K}=\mathrm{K}$ then $\mathrm{E}=\frac{\sigma}{\mathrm{K} \epsilon_{0}}$
On increasing dielectric constant electric field decreases.

Q. 24 (A)

$\mathrm{dc}=\frac{\varepsilon_{0} \mathrm{~A} \lambda \sec (\pi \mathrm{y} / 2 \mathrm{~d})}{\mathrm{dy}}$
All the elements are in series
Hence $\frac{1}{\mathrm{C}_{\mathrm{eq}}^{\mathrm{n}}}=\int_{0}^{\mathrm{d}} \frac{\mathrm{dy}}{\varepsilon_{0} \mathrm{~A} \lambda} \cos \left(\frac{\pi \mathrm{y}}{2 \mathrm{~d}}\right)$
$=\frac{2 \mathrm{~d}}{\varepsilon_{0} \mathrm{~A} \lambda \pi}\left[\sin \left(\frac{\pi \mathrm{y}}{2 \mathrm{~d}}\right)\right]_{0}^{\mathrm{d}}$
$\mathrm{C}_{\mathrm{eq}}=\frac{\varepsilon_{0} \mathrm{~A} \lambda \pi}{2 \mathrm{~d}}$
Q. 25 (A)

Immediately after the key is closed, capacitor behave like a conducting wire, therefore.

After a long time interval, capacitor behave like a open circuit. Therefore.

$$
\mathrm{i}=\frac{\mathrm{E}}{\mathrm{R}_{1}+\mathrm{R}_{3}}
$$

Q. 26 (A)

$\Rightarrow \mathrm{E}=\frac{\frac{\mathrm{E}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{E}_{2}}{\mathrm{r}_{2}}}{\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}}=\frac{\mathrm{E}_{1} \mathrm{r}_{2}+\mathrm{E}_{2} \mathrm{r}_{1}}{\mathrm{r}_{1}+\mathrm{r}_{2}}=\frac{2 \varepsilon \mathrm{R}+\varepsilon \times 0}{0+\mathrm{R}}$
$\Rightarrow \mathrm{E}=2 \varepsilon, \mathrm{r}_{\mathrm{eq}}=\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{\mathrm{r}_{1}+\mathrm{r}_{2}}=0$
Equivalent battery

$$
\mathrm{i}_{\max }=\frac{2 \varepsilon}{\mathrm{R}}
$$

$\mathrm{i}=\frac{2 \varepsilon}{2 \mathrm{R} / 3}=\frac{3 \varepsilon}{\mathrm{R}}$
$\mathrm{i}_{2}=\frac{\varepsilon}{\mathrm{R}}, \mathrm{i}_{1}=\frac{2 \varepsilon}{\mathrm{R}}, \mathrm{i}_{3}=\mathrm{i}_{4}=\frac{\varepsilon}{2 \mathrm{R}}$
potential on $\mathrm{C}=$ potential on 2 R resistance $=\mathrm{i}_{3} \times 2 \mathrm{R}$ $=\varepsilon$
charge on capacitor, $\quad \mathrm{Q}_{\max }=\mathrm{CV}=\mathrm{C} \varepsilon$
$\tau=\frac{\mathrm{Q}_{\text {max }}}{\mathrm{i}_{\text {max }}}=\frac{\mathrm{C} \varepsilon}{2 \varepsilon / \mathrm{R}}=\frac{\mathrm{RC}}{2}$
Q. 27 (B)

Just after switch S is closed capacitor act as conducting wire.
$\mathrm{i}_{1}=\frac{6}{2}=3 \mathrm{~A}$
$\mathrm{i}_{3}=\mathrm{i}_{2}=0$
After long time capacitor act as open circuit $\mathrm{I}_{1}=\mathrm{I}_{3}=0.6 \mathrm{~A}$
Q. 28 (B)
$i=\frac{V}{R} e^{-t / R C}$

$\log \mathrm{I}=\log \frac{\mathrm{V}}{\mathrm{R}}-\frac{\mathrm{t}}{\mathrm{RC}}$
at $\mathrm{t}=0, \log \mathrm{I}=$ const.
For both only one quantity is changed V, R are constant
and C changes from 1 to 2 . Slope increases magnitude wise and hence C increases.
Q. 29 (D)

$Q_{\text {first }}=Q_{\text {last }}=C E$
Ratio $=\frac{\mathrm{Q}_{\text {first }}}{\mathrm{Q}_{\text {last }}}=1$.
Q. 30 (D)

Just after switch closing

current through resistor PQ is zero just after closing the switch.

JEE-ADVANCED
 MCQ/COMPREHENSION/COLUMN MATCHING
 Q. 1 (A,B,D)

Magnitude of charge on the charged capacitor decreases and total charge is conserved.
At $\mathrm{V}_{1}=\mathrm{V}_{2} \Rightarrow$ no further flow of charge occurs i.e. condition of steady state.
In charge flow energy is consumed in heat.
Q. 2 (B,C)

Electric field in the capacitor is same at every where which is equal to V / d. so that force at C and B point is same.
Electric field out side the capacitor is zero so that force at A point is zero.
Q. 3 (B,C)

Charge on outer surfaces are equal so $Q_{1}=Q_{3}+Q_{2}+$ $\mathrm{Q}_{4} \quad$.........(i) and $\quad \mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}=\mathrm{Q}_{4}$
$\mathrm{V}=\left|\frac{\mathrm{Q}_{2}}{\mathrm{C}}\right|$ or $\mathrm{V}=\left|\frac{\mathrm{Q}_{1}-\mathrm{Q}_{3}-\mathrm{Q}_{4}}{\mathrm{C}}\right|$
$\mathrm{V}=\left|\frac{\mathrm{Q}_{3}}{\mathrm{C}}\right|$ or $\mathrm{V}=\left|\frac{\mathrm{Q}_{1}-\mathrm{Q}_{2}-\mathrm{Q}_{4}}{\mathrm{C}}\right|$
Adding (i) and (ii)
$\mathrm{Q}_{1}=\mathrm{Q}_{4}$ and $\mathrm{Q}_{2}=-\mathrm{Q}_{3}$

Q. 4 (A,C,D)

When two plates of capacitor are connected to a battery. The charges get distributed so that the charges on facing surface are equal \& opposite. Also the battery does not create or destroy charges it distributes it.

$\mathrm{Q}_{1}=\mathrm{Q}+\mathrm{CV}$
$\mathrm{Q}_{2}=\mathrm{Q}-\mathrm{CV}$

Q. 5 (A,D)

equivalent capacitance before switch closed is $\mathrm{C}_{\mathrm{eq}}=$ $\frac{2 \mathrm{C}}{3}$,

Total charge flow through the cell is $\mathrm{q}=\frac{2 \mathrm{CE}}{3}$
equivalent capacitance after switch S closed is $\mathrm{C}_{\mathrm{eq}}=$ 2C
Total charge flow through the cell is $\mathrm{q}=2 \mathrm{CE}$
Therefore some positive charge flow through the cell after closing the switch is $=q_{f}-q_{i}=2 C E-$ $\frac{2 \mathrm{CE}}{3}=\frac{4 \mathrm{CE}}{3}$
Q. 6 (A,B,C,D)
$\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{20}+\frac{1}{30}+\frac{1}{15}=\frac{3+2+4}{60} \mathrm{C}_{\mathrm{eq}}=\frac{60}{9}=\frac{20}{3} \mu \mathrm{~F}$
Total charge in this series combination is
$=\frac{20}{3} \times 90$
$q=600 \mu C$
Potential difference between the plate of C_{1} is
$=\frac{\mathrm{q}}{\mathrm{C}_{1}}=\frac{600}{20}=30 \mathrm{~V}$
Potential difference between the plate of C_{2} is $=\frac{\mathrm{q}}{\mathrm{C}_{2}}$
$=\frac{600}{30}=20 \mathrm{~V}$

Potential difference between the plate of C_{3} is $=\frac{\mathrm{q}}{\mathrm{C}_{3}}$
$=\frac{600}{15}=40 \mathrm{~V}$
$\frac{1}{\mathrm{C}_{\text {eq }}}=\frac{1}{20}+\frac{1}{30}+\frac{1}{15}=\frac{3+2+4}{60} \mathrm{C}_{\text {eq }}=\frac{60}{9}=\frac{20}{3} \mu \mathrm{~F}$
Q. 7 (A,B,C)

$V_{1}+V_{2}+V_{3}=0$
$\frac{\mathrm{Q}_{1}}{\mathrm{C}_{1}}+\frac{\mathrm{Q}_{2}}{\mathrm{C}_{2}}+\frac{\mathrm{Q}_{3}}{\mathrm{C}_{3}}=0$
$\frac{300+\mathrm{q}}{2}+\frac{\mathrm{q}}{1.5}+\frac{360+\mathrm{q}}{3}=0$
$\frac{900+3 q+4 q+720+2 q}{6}=0$
$9 q=-1620$
$\mathrm{q}=-180$
$\mathrm{Q}_{1}=120 \mu \mathrm{C}$
$\mathrm{Q}_{2}=180 \mu \mathrm{C}$
Flow of charge from right to left through A
(A,B,C,D)

given $\mathrm{V}_{\mathrm{C}}=0$ in AEFC $\mathrm{V}_{\mathrm{A}}-20=\mathrm{V}_{\mathrm{C}} \Rightarrow \mathrm{V}_{\mathrm{A}}=20 \mathrm{~V}$
Ans.
by KCL, at point D
$2\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{D}}\right)+2\left(\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\right)+4\left(\mathrm{~V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{D}}\right)=0$
$2\left(V_{A}-V_{D}\right)+2\left(V_{B}-V_{D}\right)=4 V_{D} \ldots$ (i) Ans
by KCL, at point B
$4\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)+2\left(\mathrm{~V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{B}}\right)+2\left(\mathrm{~V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{B}}\right)=0$
$4\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)+2\left(\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\right)=2 \mathrm{~V}_{\mathrm{B}} \ldots \ldots \ldots$ (ii) Ans
adding eq (i) and (ii)
$2\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{D}}\right)+2\left(\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\right)+4\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)+2\left(\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\right)$
$=4 \mathrm{~V}_{\mathrm{D}}+2 \mathrm{~V}_{\mathrm{B}}$
$\Rightarrow 6 \mathrm{~V}_{\mathrm{A}}=6 \mathrm{~V}_{\mathrm{D}}+6 \mathrm{~V}_{\mathrm{B}} \Rightarrow \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{B}}$

Q. 9 (A,D)

As the capactitance are in series hence charge on both of them will be same.
$\mathrm{E}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}$
$\mathrm{V}_{1}: \mathrm{V}_{2}=\frac{1}{1}: \frac{1}{2}, \quad \mathrm{~V}_{1}=\frac{2}{3} \times 15=10 \mathrm{~V}$
$\mathrm{V}_{2}=5 \mathrm{~V}$
Q. 10
(B,C,D)
From the diagram

Q. 11 (A,B,C,D)

Initially

$$
\begin{aligned}
& \Rightarrow \mathrm{C}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}} \\
& \mathrm{~V}=\frac{\mathrm{Q}}{\mathrm{C}} \\
&=\frac{\mathrm{Qd}}{\epsilon_{0} \mathrm{~A}}
\end{aligned}
$$

Finally

$$
\begin{aligned}
& \mathrm{C}_{1}=\mathrm{C}_{2}=\frac{2 \epsilon_{0} \mathrm{~A}}{\mathrm{~A}} \\
& \mathrm{~V}_{1}=\frac{\mathrm{Qd}}{2.2 \epsilon_{0} \mathrm{~A}} \\
& \mathrm{~V}_{2}=\frac{3 \mathrm{Qd}}{2.2 \epsilon_{0} \mathrm{~A}} \\
& \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}=\frac{\mathrm{d}}{\epsilon_{0} \mathrm{~A}} \\
& \mathrm{~V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}
\end{aligned}
$$

Q. 12 (A,B,C)

In shown fig. C_{2} and C_{3} are parallel capacitor therefore $\mathrm{V}_{2}=\mathrm{V}_{3}$ 。
Charge Q_{1} flow through battery and gone to C_{1} and divided into C_{2} and C_{3}
$\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}$, total potential $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V}_{1}+\mathrm{V}_{3}=$ $\mathrm{V}_{1}+\frac{\mathrm{V}_{2}+\mathrm{V}_{3}}{2}$
Q. 13 (B,C)
$\mathrm{C}_{\mathrm{i}}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\mathrm{C}, \quad \mathrm{C}_{\mathrm{f}}=\frac{\epsilon_{0} \mathrm{~A}}{2 \mathrm{~d}}=\frac{\mathrm{C}}{2}$
During pulling charge remains same.
Q. 14 (B,C)

Isolated $\rightarrow \mathrm{Q}=$ constant $\mathrm{C} \downarrow$
Energy $=\frac{Q^{2}}{2 C} \uparrow, E=\frac{\sigma}{\epsilon_{0}}=$ constant
Energy density $=\frac{1}{2} \in_{0} \mathrm{E}^{2}=$ constant
Q. 15 (A,C)
$\mathrm{C}=2 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{eq}}=\mathrm{C}+\frac{\mathrm{C}}{2}+\frac{\mathrm{C}}{4}+\frac{\mathrm{C}}{8}+\frac{\mathrm{C}}{16}+\ldots \ldots$.
$\mathrm{C}_{\mathrm{eq}}=\mathrm{C}\left(\frac{1}{1-1 / 2}\right)=2\left(\frac{1}{1 / 2}\right)=4 \mu \mathrm{~F}$ Ans
Charge on first row capacitor is $\mathrm{q}_{1}=2 \times 10 \mu \mathrm{C}=20 \mu \mathrm{C}$ Charge on second row capacitor is
$\mathrm{q}_{2}=1 \times 10 \mu \mathrm{C}=10 \mu \mathrm{C}$
Charge on third row capacitor is
$\mathrm{q}_{3}=\frac{1}{2} \times 10 \mu \mathrm{C}=5 \mu \mathrm{C}$

Therefore charge on the capacitor in the first row is more than on any other capacitor.

Energy stored in all capacitor is $=\frac{1}{2} \mathrm{C}_{\mathrm{eq}} \mathrm{V}^{2}=\frac{1}{2} \times 4$
$\times 10^{-6} \times(10)^{2}=0.2 \mathrm{~mJ}$ Ans
$\mathrm{C}=2 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{eq}}=\mathrm{C}+\frac{\mathrm{C}}{2}+\frac{\mathrm{C}}{4}+\frac{\mathrm{C}}{8}+\frac{\mathrm{C}}{16}+\ldots \ldots$
$C_{e q}=C\left(\frac{1}{1-1 / 2}\right)=2\left(\frac{1}{1 / 2}\right)=4 \mu \mathrm{~F}$ Ans
Q. 16 (A,B,C,D)

Initially

After connecting battery

Energy supplied by cell $=\mathrm{QE}=\mathrm{CE}^{2}$
Q. 17 (B,D)

$\mathrm{V}=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}-\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\frac{(1-3) 5}{4}=2.5 \mathrm{~V}$
(common potential)
$\Delta \mathrm{H}=\frac{1}{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V}^{2}-\left[\frac{1}{2} \mathrm{C}_{1} \mathrm{~V}^{2}+\frac{1}{2} \mathrm{C}_{2} \mathrm{~V}^{2}\right]$
$=\frac{1}{2}(1+3)(2.5)^{2}-\left[\frac{1}{2}(1+3)(5)^{2}\right]$
$=\frac{1}{2} \times 4[6.25-25]$
$=2 \times 18.75=37.5\{$ W.D. by battery $=0\}$
Q. 18 (A,C)

Charge will be stored but some energy will be lost in form of heat.
$\mathrm{A} \rightarrow$ Correct, $\quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}}$ Increase rapidly initially
C \rightarrow Correct
Q. 19 (B,C,D)
$\mathrm{Q}_{1}=\mathrm{CV}_{1}$
$\mathrm{Q}_{2}=\mathrm{CV}_{2}$

Net charge $=$ const.
[B correct]
$2 C V=C\left(V_{1}+V_{2}\right)$
$\mathrm{V}=\frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{2}$
[C correct]
As charge flows energy will certainly be lost.
[D correct]
Net charge on the connected plates is equal sum of initial charges because charge is conserved.
Q. 20 (A,B,C,D)
(a) $V_{i}=\frac{k Q}{3 R}$
$\mathrm{V}_{0}=\frac{\mathrm{kQ}}{3 \mathrm{R}}$
(b) Earthing means $V=0$
(c) $\frac{\mathrm{kq}^{\prime}}{\mathrm{R}}+\frac{\mathrm{kQ}}{3 \mathrm{R}}=0 \Rightarrow \mathrm{q}^{\prime}=-\mathrm{q} / 3$
(d) energy between the spheres increases.
Q. 21 (A,C)
$4 \times 500-2 \times 500=6 \times V$
Q. 22 (A,B,C)
$\mathrm{E}=\frac{\mathrm{V}}{\mathrm{d}} \Rightarrow$ remains constant
$\mathrm{C}^{\prime}=\mathrm{KC} \Rightarrow$ Increase
$Q^{\prime}=K Q \Rightarrow$ Increase
$\mathrm{U}=\frac{1}{2} \mathrm{KCV}^{2}=\mathrm{KU} \Rightarrow$ Increase
Q. 23 (A,C,D)

Battery connected $\mathrm{V}=$ constant
$\mathrm{U}^{\prime}=\frac{1}{2} \mathrm{KCV}^{2}=\mathrm{KU} \Rightarrow$ Increase by K -times
$\mathrm{E}=\frac{\mathrm{V}}{\mathrm{d}}=$ constant
$F=\frac{Q^{2}}{2 \epsilon_{0} A} \Rightarrow F=\frac{C^{2} V^{2}}{2 \epsilon_{0} A} \Rightarrow F^{\prime}=\frac{K^{2} C^{2} V^{2}}{2 \epsilon_{0} A}=K^{2} F$
\Rightarrow Increase by K^{2}-times
$Q=C V \Rightarrow Q^{\prime}=K C V=K Q \Rightarrow$ Increase by K-times.
Q. 24 (B,C,D)

In PQS process charge on capacitor is $\mathrm{Q}=\mathrm{CV}$
In PSQ process charge on capacitor is $\mathrm{Q}^{\prime}=\mathrm{KCV}$
Electric energy stored in PQS is $=\frac{1}{2} \mathrm{CV}^{2}$
Electric energy stored in PSQ is $=\frac{1}{2} \mathrm{KCV}^{2}$
$\mathrm{U}_{\mathrm{PSQ}}>\mathrm{U}_{\mathrm{PQS}}$
Electric field in PS is $E=\frac{V}{d}$
Electric field in $S P$ is $E=\frac{V}{d}$

$$
E_{P S}=E_{S P}
$$

Q. 25 (A,B,C,D)

Capacitance of capacitor is $=\mathrm{C}_{0}=\frac{\mathrm{k} \in_{0} \text { a. } \mathrm{L}}{\mathrm{d}}$

$C=\frac{\epsilon_{0} \mathrm{ax}}{\mathrm{d}}+\frac{\mathrm{k} \epsilon_{0} \mathrm{a}(\mathrm{L}-\mathrm{x})}{\mathrm{d}}$
$C=\frac{a \epsilon_{0}}{d}[x+k(L-x)]$
$=\frac{\mathrm{a} \epsilon_{0}}{\mathrm{~d}}[\mathrm{~kL}-(\mathrm{k}-1) \mathrm{x}]=\frac{\mathrm{a} \epsilon_{0}}{\mathrm{~d}}[\mathrm{~kL}-(\mathrm{k}-1) \mathrm{vt}]$
So, C decreases linearly with time
Charge on capacitor $\mathrm{Q}=\mathrm{C}_{0} \mathrm{~V}_{0}=\frac{\mathrm{k} \in_{0} \mathrm{aL}}{\mathrm{d}} \mathrm{V}_{0}=$ constant.

Potential difference across plate is $V=\frac{Q}{C}=\frac{\mathrm{C}_{0} \mathrm{~V}_{0}}{\mathrm{C}}$ $\Rightarrow \mathrm{V} \propto \frac{1}{\mathrm{C}}$
$V=\frac{V_{0}}{\frac{a \in_{0}}{d}[k L-(k-1) v t]}$

Potential energy $\mathrm{U}=\frac{1}{2} \mathrm{QV}=\frac{1}{2} \mathrm{C}_{0} \mathrm{~V}_{0-} \mathrm{V}$
$\Rightarrow \mathrm{U} \propto \mathrm{V}$ Ans
Q. 26 (A,C,D)
$\mathrm{C}=\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}}, \mathrm{C}^{\prime}=\frac{\mathrm{K} \epsilon_{0} \mathrm{~A}}{\mathrm{~d}} \mathrm{Q}=\mathrm{CV}=\frac{\epsilon_{0} \mathrm{KAV}}{\mathrm{d}}$ Ans
$\mathrm{Q}=\mathrm{CV}=\mathrm{C}_{1} \mathrm{~V}_{1} \Rightarrow \mathrm{~V}_{1}=\frac{\mathrm{V}}{\mathrm{K}} \mathrm{E}=\frac{\mathrm{V}_{1}}{\mathrm{~d}}=\frac{\mathrm{V}}{\mathrm{Kd}}$
Ans

$$
\begin{aligned}
& \mathrm{W}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \mathrm{CV}^{2}-\frac{1}{2} \mathrm{C}_{1} \mathrm{~V}_{1}^{2}= \\
& \frac{1}{2} \frac{\in_{0} \mathrm{AV}^{2}}{\mathrm{~d}^{2}}-\frac{1}{2} \frac{\mathrm{~K} \in_{0} \mathrm{~A}}{\mathrm{~d}}\left(\frac{\mathrm{~V}}{\mathrm{~K}}\right)^{2}=\frac{\in_{0} \mathrm{AV}^{2}}{2 \mathrm{~d}}\left(1-\frac{1}{\mathrm{~K}}\right)
\end{aligned}
$$

Ans
Q. 27 (A,D)

Potential difference $=\mathrm{V}_{0}$
Potential difference $=\mathrm{V}_{0}$
Capacitance $=\mathrm{C}$
Capacitance $=\mathrm{KC}$
[K is the dielectric constant of Slab $\mathrm{K}>1$]
$\mathrm{Q}_{0}=\mathrm{CV}_{0}$

New charge $=\mathrm{KCV}_{0}$
Potential Energy $=\frac{1}{2} \mathrm{CV}_{0}{ }^{2}$

New potential energy $=\frac{1}{2} \mathrm{KC} \mathrm{V}_{0}{ }^{2}$
Correct options are (A), (D).
Q. 28 (B,C)
$30 \mathrm{C}_{0}=\left(\mathrm{C}_{0}+\mathrm{KVC}_{0}\right) \cdot \mathrm{V}$
Q. 29 (BC)

$\mathrm{V}=$ const.
$C=\frac{\varepsilon_{0} \mathrm{kA}}{\mathrm{d}}$
$\mathrm{C} \uparrow$,
$\mathrm{Q}=\mathrm{CV} \uparrow$
$\mathrm{e}=\frac{\mathrm{V}}{\mathrm{d}}=$ const.
Q. 30 (C,D)
$C=\frac{\epsilon_{0} A}{d-t+t / K}$
Independent of Position
Q. 31 (A,B,D)

Q. 32 (B,C,D)

(B) In XWY charge increases

In XYW

(C)

$\varepsilon=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}$
$\varepsilon=\frac{\mathrm{k}^{2} \mathrm{C}^{2} \mathrm{~V}^{2}}{2 \mathrm{KC}}=\frac{1}{2} \mathrm{KCV}^{2}$

$\varepsilon=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}=\frac{\mathrm{C}^{2} \mathrm{~V}^{2}}{2 \mathrm{KC}}=\frac{1}{2} \frac{\mathrm{CV}^{2}}{\mathrm{~K}}$
Now insert dielectric

W.D. $=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=-\frac{\varepsilon_{0} \mathrm{AV}^{2}}{2 \mathrm{~d}}\left(1-\frac{1}{\mathrm{k}}\right)$
Q. 33 (A,C)
$\mathrm{t}_{1}>\mathrm{t}_{2}$
$\mathrm{R}_{1} \mathrm{C}_{1}>\mathrm{R}_{2} \mathrm{C}_{2} \quad$ for same $\mathrm{q}_{\text {max }}$
$\mathrm{q}_{01}=\mathrm{q}_{02} \Rightarrow \mathrm{E}_{1} \mathrm{C}_{1}=\mathrm{E}_{2} \mathrm{C}_{2}$
If $\mathrm{E}_{1}=\mathrm{E}_{2} \Rightarrow \mathrm{C}_{1}=\mathrm{C}_{2} \Rightarrow \mathrm{R}_{1}=\mathrm{R}_{2}$.
Q. 34 (B,C,D)

A long time after closing the switch, system comes in steady state and no current flow through capacitor..

Circuit :-

$i=\frac{E}{R_{1}+R_{2}+R_{3}}$
energy stored in battery $=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \mathrm{C}$
$\left(\frac{\mathrm{E}\left(\mathrm{R}_{3}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}\right)^{2}$
Q. 35 (A,C)
$q_{\text {max }}=q_{01}=q_{02}=$ Both capacitors are charged up to the same magnitude of charge
$\mathrm{t}_{2}>\mathrm{t}_{1}$
$\mathrm{R}_{2} \mathrm{C}_{2}>\mathrm{R}_{1} \mathrm{C}_{1}$
$q_{01}=C_{1} V_{1}=q_{02}=C_{2} V_{2}$
$\mathrm{C}_{1} \neq \mathrm{C}_{2}$
So $\mathrm{V}_{1} \neq \mathrm{V}_{2}$.
Q. 36 (B,D)

During decay of charge in RC circuit

$$
\mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{-t / \mathrm{RC}}
$$

where $I_{0}=\frac{q_{0}}{R C}$
when $t=0, I=I_{0}=\frac{q_{0}}{R C}$

Since potential difference between the plates is same initially therefore I same in both the cases at $t=0$ and is equal to

$$
\mathrm{I}=\frac{\mathrm{q}_{0}}{\mathrm{RC}}=\frac{\mathrm{V}}{\mathrm{R}}
$$

Also $\mathrm{q}=\mathrm{q}_{0} \mathrm{e}^{-t / R C}$. When $\mathrm{q}=\frac{\mathrm{q}_{0}}{2}$ then $\frac{\mathrm{q}_{0}}{2}=\mathrm{q}_{0} \mathrm{e}^{-t / R C}$ $\Rightarrow \mathrm{e}^{+/ / R C}=2$.
$\frac{\mathrm{t}}{\mathrm{RC}}=\ln 2$
$\Rightarrow \mathrm{t}=\mathrm{RC} \log _{\mathrm{e}} 2$
$\Rightarrow t \propto C$. Therefore time taken for the first capacitor
$(1 \mu \mathrm{~F})$ for discharging 50% of Initial charge will be less.
(B), (D) are the correct options.
Q. 37 (A,B,C,D)

Just afterclosing switch DC will act as wire $\mathrm{i}=10 \mathrm{~A}$
After $t=\infty$ DC will be open circuit

Q. 38 (B,D)
$\mathrm{R}_{\mathrm{eq}}=3 \Omega$
$\mathrm{i}=40 \mathrm{~A}$

$\mathrm{i}_{1}=\mathrm{i}_{2}=20 \mathrm{~A}$
At $\mathrm{t}=\infty$ capacitor act as open circuit
$\mathrm{R}_{\mathrm{eq}}=3 \Omega$
$\mathrm{i}=10 \mathrm{~A}$
Charge stored in $\mathrm{C}_{1}=\mathrm{VC}_{1}=20 \times 2 \mu \mathrm{c}=40 \mu \mathrm{C}$
Q. 39 (A)
Q. 40 (C)
Q. 41 (A)
(Q. 39 to Q.41)

When $\mathrm{C}_{3}=\infty$, there will be no charge on C_{2}

As $\mathrm{V}_{1}=10 \mathrm{~V}$ therefore $\mathrm{V}=10 \mathrm{~V}$

From graph when $\mathrm{C}_{3}=10 \mu \mathrm{~F}, \mathrm{~V}_{1}=6 \mathrm{~V}$

Charge on $\mathrm{C}_{1}=$ Charge on $\mathrm{C}_{2}+$ Charge on C_{3} $6 \mathrm{C}_{1}=4 \mathrm{C}_{2}+40 \mu \mathrm{C}$
.... (1)
Also when $\mathrm{C}_{3}=6 \mu \mathrm{~F}, \mathrm{~V}_{1}=5 \mathrm{~V}$
Again using charge equation

$5 \mathrm{C}_{1}=5 \mathrm{C}_{2}+30 \mu \mathrm{C}$
....(2)
Solving (1) and (2)
$\mathrm{C}_{1}=8 \mu \mathrm{~F}$
$\mathrm{C}_{2}=2 \mu \mathrm{~F}$.
Q. 42 (B,C)

Let us assume potential at B to be $\mathrm{x} \& \mathrm{D}$ to be y .

$$
\begin{align*}
& (x-20) 4+(x-y) 2+2 x=0 \\
& 4 x-y=40 \tag{1}\\
& 2(y-x)+(y-20) 2+y(4)=0 \\
& \Rightarrow 4 y-x=20 \tag{2}
\end{align*}
$$

Solving (1) and (2)
$\mathrm{x}=12 ; \mathrm{y}=8$

$\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}=12-8=4>0$
Q. 43 (A,B,C,D)
(A) As from figure $\mathrm{V}_{\mathrm{A}}=20 \mathrm{~V}$
(B) $4\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)+2\left(\mathrm{~V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{B}}\right)$ $=4(20-12)+2(8-12)$
$=32-8=24=2 \mathrm{~V}_{\mathrm{B}}$
(C) $2\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{D}}\right)+2\left(\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\right)$ $=2(20-8)+2(12-8)$
$=24+8=32=4 \mathrm{~V}_{\mathrm{D}}$
(D) $\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{D}}=12+8=20=\mathrm{V}_{\mathrm{A}}$
Q. 44 (B,C)
$\mathrm{V}_{\mathrm{B}}=12$

$$
\mathrm{V}_{\mathrm{D}}=8
$$

Q. 45 (C)
$\mathrm{q}_{1}=4(20-12)=32 \mu \mathrm{C}$
$\mathrm{q}_{2}=2(20-8)=24 \mu \mathrm{C}$
$\mathrm{q}_{3}=2(12-8)=8 \mu \mathrm{C}$
Q. 46 (C)
Q. 47 (D)
Q. 48 (C)
(Q. 46 to 48)

For $t=0$ to $t_{o}=R C$ seconds, the circuit is of charging type. The charging equation for this time is

$$
\mathrm{q}=\mathrm{CE}\left(1-\mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}\right)
$$

Therefore the charge on capacitor at time $t_{0}=R C$ is

$$
\mathrm{q}_{\mathrm{o}}=\mathrm{CE}\left(1-\frac{1}{\mathrm{e}}\right)
$$

For $\mathrm{t}=\mathrm{RC}$ to $\mathrm{t}=2 \mathrm{RC}$ seconds, the circuit is of discharging type. The charge and current equation for this time are

$$
q=q_{o} e^{-\frac{t-t_{o}}{R C}} \quad \text { and } i=\frac{q_{o}}{R C} e^{-\frac{t-t_{o}}{R C}}
$$

Hence charge at $\mathrm{t}=2 \mathrm{RC}$ and current at $\mathrm{t}=1.5 \mathrm{RC}$ are

$$
\mathrm{q}=\mathrm{q}_{\mathrm{o}} \mathrm{e}^{-\frac{2 \mathrm{RC}-\mathrm{RC}}{\mathrm{RC}}}=\frac{\mathrm{q}_{\mathrm{o}}}{\mathrm{e}}=\frac{1}{\mathrm{e}} \mathrm{CE}\left(1-\frac{1}{\mathrm{e}}\right)
$$

and $\quad i=\frac{q_{o}}{R C} e^{-\frac{1.5 R C-R C}{R C}}=\frac{q_{o}}{\sqrt{\mathrm{e} R C}}=\frac{\mathrm{E}}{\sqrt{\mathrm{e} R}}\left(1-\frac{1}{\mathrm{e}}\right)$ respectively

Since the capacitor gets more charged up from $t=$ $2 R C$ to $t=3 R C$ than in the interval $t=0$ to $t=R C$, the graph representing the charge variation is as shown in figure

Comprehension Type Questions \# 4 (Q. No. 49 to 50)
The charge across the capacitor in two different RC circuits 1 and 2 are plotted as shown in figure.

Q. 49 (A,C)
$\mathrm{C}_{2} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$

As $\mathrm{q}_{\text {max }}$ for both is same hence A is corrent As $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$ Hence EMF's of the cells may be different
Q. 50 (D)
$\mathrm{R}_{2} \mathrm{C}_{2}>\mathrm{R}_{1} \mathrm{C}_{2}$
Q. 51 (A)
Q. 52 (B)
Q. 53 (C)
Q. 54 (C)

Initial (when S is open)

Finally (When S is closed)

So charge flown $=$ [charge finally - charge initially]

$$
\begin{aligned}
& =\in \mathrm{C}-\in \mathrm{C} / 2 \\
& =\in \mathrm{C} / 2
\end{aligned}
$$

Work done by battery $=\in \frac{C}{2} \times \in=\frac{\epsilon^{2} C}{2}$
Initial energy

$$
\begin{align*}
& \mathrm{U}_{\mathrm{i}}=\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}}+\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}} \tag{52}\\
& =\left(\frac{\mathrm{C} \in}{2}\right)^{2} \frac{1}{\mathrm{C}}=\frac{1}{4} \mathrm{C} \epsilon^{2} \\
& \mathrm{U}_{\mathrm{f}}=\frac{1}{2} \mathrm{C} \epsilon^{2}
\end{align*}
$$

$$
\text { Change }=\frac{1}{4} \mathrm{C} \epsilon^{2}
$$

(53)

Heat $=$ Work done by
battery - $\left(\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}\right)$

$$
=\frac{1}{2} C \epsilon^{2}-\left(\frac{1}{4} C \epsilon^{2}\right)=\frac{1}{4} C \epsilon^{2}
$$

Q. 55 (B)
at $\mathrm{t}_{0} ; \mathrm{q}=\mathrm{q}_{0}=60 \mu \mathrm{C}$
Q. 56 (C)
$\mathrm{q}=\mathrm{q}_{0} \mathrm{e}^{-/ / R C}=60 \times 10^{-6} \mathrm{e}^{-100 \times 10^{-6} / 10 \times 10^{-6} \times 10}=\frac{60}{\mathrm{e}}$ $\mu \mathrm{C}=22 \mu \mathrm{C}$.
Q. 57 (A)
$\mathrm{q}=\mathrm{q}_{0} \mathrm{e}^{-t / R C}=60 \times 10^{-6} \mathrm{e}^{-1 \times 10^{-3} / 10 \times 10^{-6} \times 10}=\frac{60}{\mathrm{e}^{10}}$ $\mu \mathrm{C}=0.003 \mu \mathrm{C}$.
Q. 58 (C)
$\mathrm{i}=\frac{100}{10} \mathrm{e}^{-10^{-4} / 10^{-4}} \mathrm{amp}$
$=\frac{10}{e}=3.7 \mathrm{amp}$
Q. 59 (B) $\mathrm{P}=\mathrm{V} . \mathrm{i}=100 \times 3.7=370 \mathrm{~W}$
Q. 60 (C)
$\frac{d H}{d t}=i^{2} R$
$=(3.7)^{2} \times 10=136.9 \mathrm{~W}$
Q. 61 (D)
$P_{\text {battery }}=P_{\text {Heat }}+P_{C}$
$P_{C}=P_{\text {battery }}-P_{\text {Heat }}$
$=370-136.9=233.1 \mathrm{~W}$.
Q. 62 (A)

$$
\mathrm{i}_{0}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{6}{24}=0.25 \mathrm{~A}
$$

Q. 63 (B)

$$
\mathrm{i}=\mathrm{i}_{0} \mathrm{e}^{-t / R C}
$$

$$
=0.25 \mathrm{e}^{-1}
$$

$$
=\frac{0.25}{\mathrm{e}}=0.09 \mathrm{~A}
$$

Q. 64 (A)
Q. 65 (C)

Rate at which energy is stored $=\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}\right)=\frac{\mathrm{Q}}{\mathrm{C}}$.
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{Qi}}{\mathrm{C}}$
$\mathrm{Q}=\varepsilon \mathrm{C}\left\{1-\mathrm{e}^{-t / R C}\right\}$
$\mathrm{i}=\frac{\varepsilon \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}}{\mathrm{R}}$
Rate of energy storage $=\frac{\varepsilon^{2}}{R}\left\{1-e^{-t / R C}\right\}\left\{e^{-t / R C}\right\}=$
$\frac{\varepsilon^{2}}{R}\left\{\mathrm{e}^{-t / R C}-\mathrm{e}^{-2 t R C}\right\}$

It will be maximum when, $\mathrm{e}^{-t / R C}-\mathrm{e}^{-2 t R C}$ will be maximum let $\mathrm{y}(\mathrm{t})=\mathrm{e}^{-t / R C}-\mathrm{e}^{-2 t / R C}$
for maximum, $y^{\prime}(t)=0$
$y^{\prime}(t)=\frac{-e^{-t / R C}}{R C}+\frac{2 e^{-2 t / R C}}{R C}$
$\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}=\frac{1}{2}$
putting it back in eq. (1)
(1) maximum rate of energy storage $=\frac{\varepsilon^{2}}{R}$
$\left\{\frac{1}{2}-\left(\frac{1}{2}\right)^{2}\right\}=\frac{\varepsilon^{2}}{4 \mathrm{R}}=\frac{(20)^{2}}{4 \times 10}=10 \mathrm{~J} / \mathrm{s}$
(2) This will occur when, $\mathrm{e}^{-t / \mathrm{RC}}=\frac{1}{2}$
$\frac{-\mathrm{t}}{\mathrm{RC}}=\ln \frac{1}{2}$
$\mathrm{t}=\mathrm{RC} \ell \mathrm{n} 2=10 \times 100 \times 10^{-6} \times \ell \mathrm{n} 2=(\ell \mathrm{n} 2) \mathrm{ms}$
Q. 66 (C)
$\mathrm{q}_{0}=4 \mu \mathrm{C}$
$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{\mathrm{q}_{0}}{\mathrm{RC}} \mathrm{e}^{-t / R C}$
$=\frac{4 \times 10^{-6}}{1 \times 10^{-6} \times 3 \times 10^{6}} \mathrm{e}^{-1 / 3}=\frac{4}{3} \mathrm{e}^{-1 / 3} \mu \mathrm{C} / \mathrm{sec}$
Q. 67 (A)
$\mathrm{U}=\frac{\mathrm{q}_{0}^{2}}{2 \mathrm{C}}\left(1-\mathrm{e}^{\mathrm{tRC}}\right)^{2}$
$\frac{d U}{d t}=\frac{q_{0}^{2}}{R C^{2}}\left(1-e^{-t / R C}\right) e^{-t / R C}$
$=\frac{\left(4 \times 10^{-6}\right)^{2}}{3 \times 10^{6} \times\left(1 \times 10^{-6}\right)^{2}}\left(1-\mathrm{e}^{-1 / 3}\right) \mathrm{e}^{-1 / 3}$
$=\frac{16}{3}\left(1-\mathrm{e}^{-1 / 3}\right) \mathrm{e}^{-1 / 3} \mu \mathrm{~J} / \mathrm{sec}$.
Q. 68 (C)
$\mathrm{H}=\int \mathrm{i}^{2} \mathrm{Rdt} \Rightarrow \frac{\mathrm{dH}}{\mathrm{dt}}=\mathrm{i}^{2} \mathrm{R}$

$$
\begin{array}{ll}
\frac{\mathrm{dH}}{\mathrm{dt}}=\mathrm{i}_{0}^{2} \mathrm{Re}^{-2 \mathrm{t} / \mathrm{RC}}=\left(\frac{4}{3 \times 10^{6}}\right)^{2} 3 \times 10^{6} \mathrm{e}^{-2 / 3}= & =\frac{1}{2} \frac{\mathrm{~A} \in_{0}}{\mathrm{~d}_{\mathrm{i}}{ }^{2}} \mathrm{~V}^{2}\left(\mathrm{~d}_{\mathrm{f}}-\mathrm{d}_{\mathrm{i}}\right) \\
\frac{16}{3} \mathrm{e}^{-2 / 3} \mu \mathrm{~J} / \mathrm{s} & \\
& =\frac{1}{2} \frac{100 \times 10^{-4} \times 9 \times 10^{-12} \times(300)^{2}(5-2) \times 10^{-2}}{\left(2 \times 10^{-2}\right)^{2}} \\
& =30.375 \times 10^{-9} \mathrm{~J}
\end{array}
$$

Q. 69 (C)

$$
\begin{aligned}
& \mathrm{U}=\mathrm{qV} \Rightarrow \frac{\mathrm{dU}}{\mathrm{dt}}=\mathrm{V} \frac{\mathrm{dq}_{0}}{\mathrm{dt}}\left(1-\mathrm{e}^{-t / R C}\right) \\
& \frac{\mathrm{dU}}{\mathrm{dt}}=\frac{\mathrm{q}_{0} \mathrm{~V}}{\mathrm{RC}} \mathrm{e}^{-t / R C} \\
& =\frac{4 \times 10^{-6} \times 4}{3 \times 10^{6} \times 1 \times 10^{6}} \mathrm{e}^{-1 / 3} \\
& =\frac{16}{3} \mathrm{e}^{-1 / 3} \mu \mathrm{~J} / \mathrm{sec} .
\end{aligned}
$$

Q. 70 (D)
$\mathrm{E}=\frac{\mathrm{V}}{\mathrm{d}}=\frac{300}{5 \times 10^{-2}}=6 \times 10^{3} \mathrm{~V} / \mathrm{m}$
Q. 71 (B)

$$
\begin{aligned}
\Delta \mathrm{U} & =\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \mathrm{C}_{\mathrm{f}} \mathrm{~V}^{2}-\frac{1}{2} \mathrm{C}_{\mathrm{i}} \mathrm{~V}^{2} \\
& =\frac{1}{2}\left(\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}_{\mathrm{f}}}-\frac{\epsilon_{0} \mathrm{~A}}{\mathrm{~d}_{\mathrm{i}}}\right) \mathrm{V}^{2}=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{2}\right)
\end{aligned}
$$

$$
\frac{9 \times 10^{-12} \times 100 \times 10^{-4}}{10^{-2}}(300)^{2}
$$

$$
=-12.15 \times 10^{-8} \mathrm{~J}=-1215 \times 10^{-10} \mathrm{~J} .
$$

Q. 72 (D)
$\mathrm{E}=\frac{\mathrm{Q}}{\mathrm{A} \in_{0}}=$ Constant
$=\frac{\mathrm{V}}{\mathrm{d}_{\mathrm{i}}}=\frac{300}{2 \times 10^{-2}}=15 \times 10^{3} \mathrm{~V} / \mathrm{m}$.
Q. 73 (A)
$\mathrm{Q}=\frac{\mathrm{A} \epsilon_{0}}{\mathrm{~d}_{\mathrm{i}}} \mathrm{V}=\mathrm{constant}$
$\Delta \mathrm{U}=\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}_{\mathrm{f}}}-\frac{\mathrm{Q}^{2}}{\mathrm{C}_{\mathrm{i}}}=\frac{1}{2} \mathrm{~A} \in_{0} \mathrm{~V}^{2}\left(\frac{\mathrm{~d}_{\mathrm{f}}}{\mathrm{d}_{\mathrm{i}}^{2}}-\frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}}^{2}}\right)$
Q. 74 (A)
$\mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V}=2 \times 10=20 \mu \mathrm{~F}$
$\mathrm{Q}_{2}=\mathrm{C}_{2} \mathrm{~V}=4 \times 10=40 \mu \mathrm{~F}$
$\mathrm{Q}_{3}=\mathrm{C}_{3} \mathrm{~V}=6 \times 10=60 \mu \mathrm{~F}$
Q. 75 (B)

Total charge flown $=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}=120 \mu \mathrm{C}$
So W.D. $=\left(120 \times 10^{-6}\right) \times 10=1200 \mu \mathrm{~J}$
Q. 76 (C)

Total energy stored $=\frac{1}{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\right) \mathrm{V}^{2}$
$=\frac{1}{2}(2+4+6) \times 10^{-6} \times 10^{2}$
$=600 \mu \mathrm{~J}$
Q. 77 (A)
$\frac{1}{\mathrm{C}_{1}{ }^{\prime}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}} \quad \Rightarrow \mathrm{C}_{1}{ }^{\prime}=1 \mu \mathrm{~F}$
$\mathrm{C}_{2}{ }^{\prime}=\mathrm{C}_{2}+\mathrm{C}_{1}{ }^{\prime}=3 \mu \mathrm{~F} \Rightarrow \mathrm{C}_{\mathrm{eq}}=1 \mu \mathrm{~F}$
Q. 78 (D)

$\mathrm{C}_{\mathrm{eq}}=1 \mu \mathrm{~F}$
$\mathrm{Q}=\mathrm{C}_{\text {eq }} \mathrm{V}=900 \mu \mathrm{~F}$
charge on nearest capacitor $=900 \mu \mathrm{~F}$
Q. 79 (B)
from point potential method

$\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{d}}=100 \mathrm{~V}$
Q. 80 (A)

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}}=\frac{30}{5}=6 \text { Volt }
$$

Q. 81 (A)

$$
\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2}\left(5 \times 10^{-6}\right)(6)^{1}=90 \mu \mathrm{~J}
$$

Q. 82 (B)

Let V then

$$
\begin{aligned}
& \left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V}=\mathrm{Q}_{1}+\mathrm{Q}_{2} \\
& \mathrm{~V}=\frac{\mathrm{Q}_{1}+\mathrm{Q}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\frac{(30+50) \times 10^{-6}}{(5+10) \times 10^{-6}} \\
& \mathrm{~V}=\frac{16}{3} \text { volt }
\end{aligned}
$$

Q. 83 (A)
(Initial - final) energy
$=\left(\frac{1}{2} \frac{\mathrm{Q}_{1}^{2}}{\mathrm{C}_{1}^{2}}+\frac{1}{2} \frac{\mathrm{Q}_{2}^{2}}{\mathrm{C}_{2}}\right)-\left(\frac{1}{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V}^{2}\right)$
$=\frac{1}{2}\left[180+250-5 \times 10 \times \frac{16}{3}\right] \times 10^{-6} \mathrm{~J}$
$=\frac{5}{3} \times 10^{-6} \mathrm{~J}$
Q. 84 (A)

$$
\frac{\mathrm{Q}_{1}^{\prime}}{\mathrm{Q}_{2}^{\prime}}=\frac{\mathrm{C}_{1} \mathrm{~V}}{\mathrm{C}_{2} \mathrm{~V}}=\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{5}{10}=\frac{1}{2}
$$

Q. 85 (B)
$\mathrm{Q}_{1}^{\prime}=\mathrm{C}_{1} \mathrm{~V}=5 \times \frac{16}{3} \mu \mathrm{C}=\frac{80}{3} \mu \mathrm{C}$
$\mathrm{Q}_{2}^{\prime}=\mathrm{C}_{2} \mathrm{~V}=10 \times \frac{16}{3}=160 / 3 \mu \mathrm{C}$
Q. 86 (B)
Q. 87 (C)

Charge is constant
$\mathrm{E}=\frac{\mathrm{q}}{2 \mathrm{~S} \varepsilon_{0}}$
$\left.\begin{aligned} & \text { So, } \mathrm{F}=\mathrm{qE}=\frac{\mathrm{q}^{2}}{2 \mathrm{~S} \varepsilon_{0}} \\ & \text { So, W.D. }=\mathrm{F}\left[\mathrm{x}_{2}-\mathrm{x}_{1}\right]\end{aligned} \right\rvert\, \longrightarrow$ S
$=\frac{q^{2}}{2 S \varepsilon_{0}}\left(x_{2}-x_{1}\right)$
$C=\frac{\varepsilon_{0} S}{x}$
$\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2}\left(\frac{\varepsilon_{0} \mathrm{~S}}{\mathrm{x}}\right) \mathrm{V}^{2}$
$\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dx}}=\frac{1}{2} \frac{\varepsilon_{0} \mathrm{SV}^{2}}{\mathrm{x}^{2}}$
$\mathrm{W}=\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}} \mathrm{~F} \cdot \mathrm{dx}=\frac{1}{2} \varepsilon_{0} \mathrm{SV}^{2}\left[-\frac{1}{\mathrm{x}}\right]_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}$
$\mathrm{W}=\frac{1}{2} \varepsilon_{0} \mathrm{SV}^{2}\left[\frac{1}{\mathrm{x}_{1}}-\frac{1}{\mathrm{x}_{2}}\right]$
Q. 88 (C)
outer sphere is earthed
$\mathrm{C}=\frac{4 \pi \epsilon_{0} \mathrm{kab}}{\mathrm{b}-\mathrm{a}}=$
$\frac{4 \times 3.14 \times 8.85 \times 10^{-12} \times 5 \times 10 \times 10^{-2} \times 120 \times 10^{-2}}{(12-10) \times 10^{-2}}$
$\mathrm{C}=3.34 \times 10^{-10}=\frac{10}{3} \times 10^{-10} \mathrm{~F}$
Q. 89 (A)
inner sphere is earthed
$\mathrm{C}=\frac{4 \pi \epsilon_{0} \mathrm{ab}}{\mathrm{b}-\mathrm{a}}+4 \pi \epsilon_{0} \mathrm{~b}$
$=\frac{10}{3} \times 10^{-10} \mathrm{~F}+4 \times 3.14 \times 8.85 \times 10^{-12} \times 12 \times 10^{-}$
2
$=3.34 \times 10^{-10}+0.13338 \times 10^{-10}$
$=\left(\frac{10}{3}+\frac{1.4}{10}\right) \times 10^{-10} \quad=\frac{104}{30} \times 10^{-10} \mathrm{~F}$
Q. 90 (A) p (B) r (C) q (D) p

The initial charge on capacitor $=\mathrm{CV}_{\mathrm{i}}=2 \times 1 \mu \mathrm{C}=$ $2 \mu \mathrm{C}$
The final charge on capacitor $=\mathrm{CV}_{\mathrm{f}}=4 \times 1 \mu \mathrm{C}=4$ $\mu \mathrm{C}$
\therefore Net charge crossing the cell of emf 4 V is
$q_{f}-q_{i}=4-2=2 \mu C$
The magnitude of work done by cell of emf 4 V is $\mathrm{W}=\left(\mathrm{q}_{\mathrm{f}}-\mathrm{q}_{\mathrm{i}}\right) 4=8 \mu \mathrm{~J}$
The gain in potential energy of capacitor is $\Delta U=$
$\frac{1}{2} \mathrm{C}\left(\mathrm{V}_{\mathrm{f}}^{2}-\mathrm{V}_{\mathrm{i}}^{2}\right)=\frac{1}{2} 1 \times\left[4^{2}-2^{2}\right] \mu \mathrm{J}=6 \mu \mathrm{~J}$
Net heat produced in circuit is $\Delta \mathrm{H}=\mathrm{W}-\Delta \mathrm{U}=8$ $-6=2 \mu \mathrm{~J}$
Q. 91 (A) p,q,s (B) p,r,s (C) p,q (D) p,r
(A) For potential difference across each cell to be same

$$
\begin{aligned}
& \quad E_{1}-i r=E_{2}+i r \quad \text { or } \quad i=\frac{E_{1}-E_{2}}{2 r} \\
& \left(<\frac{E_{1}-E_{2}}{2 r+R}\right)
\end{aligned}
$$

Hence potential difference across both cells cannot be same.
Cell of lower emf charges up.
For potential difference across cell of lower emf to be zero

$$
\mathrm{E}_{2}+\mathrm{ir}=0
$$

which is not possible.
Current in the circuit cannot be zero
$\because \mathrm{E}_{1} \neq \mathrm{E}_{2}$.
(B) For potential difference across each cell to be same
$E_{1}-\mathrm{ir}=E_{2}-$ ir which is not possible
No cell charges up.
For potential difference across cell of lower emf to be zero

$$
\begin{array}{cl}
E_{2}-i r=0 & \text { and } \\
E_{1}-i(r+R)=0 & \\
\text { or } \frac{E_{1}}{r+R}=\frac{E_{2}}{r} & \text { which is possible. }
\end{array}
$$

$\because \mathrm{E}_{1}>\mathrm{E}_{2}$.
Current in the circuit cannot be zero.
(C) Situation is same as in (A) except current decreases from $\frac{E_{1}-E_{2}}{2 r+R}$ to zero.
Hence the only option that shall changes is 'current shall finally be zero.'
(D) Situation is same as in (B) except current decreases from $\frac{E_{1}+E_{2}}{2 r+R}$ to zero.

Hence the only option that shall changes is 'current shall finally be zero.'

NUMERICAL VALUE BASED

Q. 1 [119]
$\mathrm{Q}=\mathrm{CV}$
$V=--\int_{-3}^{4} E d x=-20 \int_{-3}^{4}\left(x^{2}+\frac{4}{3}\right) d x$

$$
\begin{aligned}
& V=-2 Q\left[\frac{x^{3}}{3}+\left.\frac{4 x}{3}\right|_{-3} ^{4}\right] \\
& V=-2 Q\left[\frac{1}{3}[64+27]+\frac{4}{3}[7]\right]
\end{aligned}
$$

$$
\frac{\mathrm{Q}}{\mathrm{C}}=3 \mathrm{Q}\left[\frac{119}{3}\right]
$$

$$
\frac{1}{\mathrm{C}}=119 \mathrm{~F}^{-1}
$$

Q. 2 [12]

Initially,

$\mathrm{q}_{1}=24\left(\frac{2}{3} \mu \mathrm{~F}\right)=16 \mu \mathrm{C} \quad \& \mathrm{q}_{2}=16 \mu \mathrm{C}$
Finally,

$\left(\mathrm{V}_{1}-24\right) \times 1+\left(\mathrm{V}_{1}-0\right) \times 2+\left(\mathrm{V}_{1}-24\right) \times 2+\left(\mathrm{V}_{1}-0\right)$
$\times 1=0$
$\mathrm{V}_{1}(1+2+2+1)-24 \times 3=0$
$\Rightarrow \mathrm{V}_{1}=\frac{24 \times 3}{6}=12 \mathrm{~V}$
$\mathrm{Q}_{1}+\mathrm{Q}_{2}=(12-24) \times 1+(12-0) \times 2=-12+24=$ $12 \mu \mathrm{C}$
$\mathrm{Q}_{3}+\mathrm{Q}_{4}=(12-24) \times 2+(12-0) \times 1=-24+12=$ $-12 \mu \mathrm{C}$
Initial net charge on plates left of $S=0$
Final net charge on plates left of $S=Q_{1}+Q_{2}=12 \mu \mathrm{C}$ Charge flowing through $\mathrm{S}=12 \mu \mathrm{C}$ towards left

Alternative:-

$-2 \times 12+1 \times 12=0=-12=12 \mu \mathrm{C}$
Q. 3 [3]

$C\left(x-V_{0}\right)+C(x-0)+C\left(x+4 V_{0}\right)=0$
$3 \mathrm{Cx}=-3 \mathrm{CV}_{0}$
$\mathrm{Q}=\frac{3 \mathrm{~V}_{0} \varepsilon_{0} \mathrm{~A}}{\mathrm{~L}} \Rightarrow \mathrm{x}=3$
Q. 5
Q. 4 [2]

Potential across $2 \mu \mathrm{~F}=\frac{4}{2}=2$ volt
[4]

$\mathrm{V}_{1}=\frac{6}{8} \times \mathrm{V}=\frac{3}{4} \mathrm{~V}$
$\mathrm{V}_{2}=\frac{1}{4} \mathrm{~V}$

Now $\frac{3}{4} \mathrm{~V}<100 \Rightarrow \mathrm{~V}<\frac{400}{3}$
$\frac{\mathrm{V}}{4}<50 \quad \Rightarrow \quad \mathrm{~V}<200 \mathrm{~V}$
$\mathrm{V}<400 \quad \Rightarrow \quad \mathrm{~V}<400$
Common solution $\mathrm{V}<\frac{400}{3}$
Q. 6 [9]

$$
\mathrm{C}_{1}=4 \pi \in \mathrm{R}_{1}=\frac{1}{9 \times 10^{9}} 0.1=\frac{1}{9 \times 10^{10}} \mathrm{~F}
$$

$$
\mathrm{U}_{1}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{1}}=\frac{\left(20 \times 10^{-6}\right)^{2}}{2 \times \frac{1}{9 \times 10^{10}}}=18 \mathrm{~J}
$$

$\mathrm{C}_{2}=4 \pi \in \mathrm{R}_{2}$ and $\mathrm{C}_{2}=2 \mathrm{C}_{1}$
$\mathrm{U}_{2}=\frac{\mathrm{U}_{1}}{2}=9 \mathrm{~J}$
$\mathrm{H}=\Delta \mathrm{U}=9 \mathrm{~J}$
Q. 7 [5]
$\mathrm{q}=\mathrm{q}^{\prime}$
$\mathrm{C}_{0} \mathrm{~V}_{0}=\mathrm{CV}$
$\mathrm{C}_{0}=\mathrm{C}$ as $\mathrm{V}=\mathrm{V}_{0}$ given
$\mathrm{C}_{0}=\frac{\in_{0} \mathrm{~A}}{\mathrm{~d}}$

$$
C_{1}=\frac{\epsilon_{0} A}{d-t+\frac{t}{K}}
$$

But by increasing d to $\mathrm{d}+0.24 \mathrm{~cm}$ then
C_{1} becomes $C=\frac{\in_{0} A}{(d+0.24-t)+\frac{t}{K}}$

$$
\begin{aligned}
& d=d+0.24-t+\frac{t}{K} \\
& K=\frac{t}{t-0.24}=5
\end{aligned}
$$

Q. 8 [0750]

Just after closing switch no current flows through R_{2} so $\mathrm{I}_{1}=3 \mathrm{~mA}$
Long time after closing switch no current flows through C so $\mathrm{I}_{2}=2 \mathrm{~mA}$
Directly after re-opening the switch no current flows through R_{1} and the capacitor will discharge through

$$
\mathrm{R}_{2} \text { so } \mathrm{I}_{3}=2 \mathrm{~mA}
$$

KVPY

PREVIOUS YEAR'S

Q. 1 (D)

Discharging -
$\mathrm{Q}=\mathrm{Q}_{0} \mathrm{e}^{-t / R C}, \mathrm{U}^{\prime}=\frac{\mathrm{U}}{2} \Rightarrow \frac{\mathrm{Q}_{0}{ }^{2}}{2 \mathrm{C}} \mathrm{e}^{-2 t / \text { RC }}=\frac{\mathrm{Q}_{0}{ }^{2}}{2 \mathrm{C}}$
Q. 2 (D)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{AB}}=\frac{5 \frac{\mathrm{R}}{3}}{\frac{5 \mathrm{R}}{3}+\mathrm{R}} \times \mathrm{V}=\frac{5}{8} \mathrm{~V} \\
& \mathrm{Q}=\frac{5}{8} \mathrm{CV}
\end{aligned}
$$

Q. 3 (B)

For equilibrium of m_{1}
$\mathrm{T}_{1} \cos \theta=\mathrm{m}_{1} \mathrm{~g}$
$\mathrm{T}_{1} \sin \theta=\mathrm{F}$
$\tan \theta=\frac{\mathrm{F}}{\mathrm{m}_{1} \mathrm{~g}}$
For equilibrium of m_{2}
$\mathrm{T}_{2} \cos \theta=\mathrm{m}_{2} \mathrm{~g}$
$\mathrm{T}_{2} \sin \theta=\mathrm{F}$
$\tan \theta=\frac{F}{m_{1} g}$
from (1) \& (2)
$\mathrm{m}_{1}=\mathrm{m}_{2}$
Q. 4
(B)

Initial charge on both $\mathrm{C}=\frac{\mathrm{CE}}{2}$

New charge on each $\mathrm{C}=\left(\frac{\mathrm{kC}}{\mathrm{k}+1}\right) \mathrm{E}$
Change in charge on C is supplied by battery
\therefore Charge supply by battery $=\left(\frac{\mathrm{kC}}{\mathrm{k}+1}\right) \mathrm{E}-\frac{\mathrm{CE}}{2}$
$\Rightarrow \mathrm{CE}\left[\frac{\mathrm{k}}{\mathrm{k}+1}-\frac{1}{2}\right]$
$\Rightarrow \mathrm{CE}\left[\frac{\mathrm{k}-1}{2(\mathrm{k}+1)}\right]$
Charge passes through battery is change supply by battery
\therefore Ans. $\mathrm{CE}\left[\frac{\mathrm{k}-1}{2(\mathrm{k}+1)}\right]$

Q. 4 (3)

$\mathrm{C}_{0}=\frac{\in_{0} \mathrm{~A}}{\mathrm{~d}}$
$\mathrm{C}^{\prime}=\mathrm{C}_{1}$ and C_{2} in series.
i.e. $\frac{1}{\mathrm{C}^{\prime}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}$
$\frac{1}{\mathrm{C}^{\prime}}=\frac{(3 \mathrm{~d} / 4)}{\epsilon_{0} \mathrm{KA}}+\frac{\mathrm{d} / 4}{\epsilon_{0} \mathrm{~A}}$
$\frac{1}{\mathrm{C}^{\prime}}=\frac{\mathrm{d}}{4 \in_{0} \mathrm{~A}}\left(\frac{3+\mathrm{K}}{\mathrm{K}}\right)$
$\mathrm{C}^{\prime}=\frac{4 \mathrm{KC}_{0}}{(3+\mathrm{K})}$
Q. 5 (1)

$$
\begin{aligned}
& \frac{2 \mathrm{~K} \lambda}{\mathrm{r}}=\frac{\sigma}{\varepsilon_{0}} \quad(\mathrm{x}=3 \mathrm{~m}) \\
& \sigma=0.424 \times 10^{-9} \frac{\mathrm{C}}{\mathrm{~m}^{2}}
\end{aligned}
$$

Q. 6 (3)

$$
\mathrm{C}=\frac{\varepsilon_{0} \mathrm{~A}}{\frac{\mathrm{~d}}{2 \mathrm{~K}}+\frac{\mathrm{d}}{2}}=\frac{2 \varepsilon_{0} \mathrm{~A}}{\frac{\mathrm{~d}}{\mathrm{~K}}+\mathrm{d}}
$$

$$
\begin{aligned}
& \quad=\frac{2 \times 2 \varepsilon_{0}}{\frac{1}{3.2}+1}=\frac{4 \times 3.2}{4.2} \varepsilon_{0} \\
& =3.04 \varepsilon_{0}
\end{aligned}
$$

Q. 7 (2)

Q. 8 (864)
$\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \times 14 \times 12 \times 12 \mathrm{pJ} \quad\left(\because \mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}\right)$
$=1008 \mathrm{pJ}$
$\mathrm{U}_{\mathrm{f}}=\frac{1008}{7} \mathrm{pJ}=144 \mathrm{pJ} \quad(\because \mathrm{Cm}=\mathrm{kC} 0)$
Mechanical energy $=\Delta U$
= 1008 - 144
$=864 \mathrm{pJ}$
Q. 9 (16)
$20=\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V} \Rightarrow \mathrm{V}=2$ volt.
$\mathrm{Q} 2=\mathrm{C}_{2} \mathrm{~V}=16 \mu \mathrm{C}$
$=16$
Q. 10 (2)
$\mathrm{i}_{0}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{30 / 3}{5 \times 10^{6}}=2 \times 10^{-6}$
\therefore Ans. $=2.00$
Q. 11 (161)

Q. 21 [4]
$\Delta \mathrm{U}=\frac{1}{2}(\Delta \mathrm{C}) \mathrm{V}^{2}$
$\Delta \mathrm{U}=\frac{1}{2}(\mathrm{KC}-\mathrm{C}) \mathrm{V}^{2}$
$\Delta \mathrm{U}=\frac{1}{2}(2-1) \mathrm{CV}^{2}$
$\Delta \mathrm{U}=\frac{1}{2} \times 200 \times 10^{-6} \times 200 \times 200$
$\Delta \mathrm{U}=4 \mathrm{~J}$
Q. 22 (2)
$\mathrm{V}=\mathrm{V}_{0}\left(1-\mathrm{e}^{-t / R C}\right)$
$2=20\left(1-\mathrm{e}^{-t / R C}\right)$
$\frac{1}{10}=1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
$\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}=\frac{9}{10}$
$\mathrm{e}^{\mathrm{t} / \mathrm{RC}}=\frac{10}{9}$
$\frac{\mathrm{t}}{\mathrm{RC}}=\ln \left(\frac{10}{9}\right) \Rightarrow \mathrm{C}=\frac{\mathrm{t}}{\mathrm{R} \ln \left(\frac{10}{9}\right)}$
$\mathrm{C}=\frac{10^{-6}}{10 \times .105}=.95 \mu \mathrm{~F}$

JEE-ADVANCED

PREVIOUS YEAR'S
Q. 1 [2]

Equation of charging of capacitor,

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{R}_{\mathrm{cq}} \mathrm{C}_{\mathrm{eq}}}\right) \\
& \mathrm{C}_{\mathrm{eq}}=2+2=4 \mu \mathrm{~F} \\
& \mathrm{R}_{\mathrm{eq}}=1 \mathrm{M} \Omega \\
& 4=10\left(1-\mathrm{e}^{-\frac{\mathrm{t}}{10^{6} \times 4 \times 10^{-6}}}\right) \\
& \mathrm{e}^{-\mathrm{t} / 4}=0.6 \quad \Rightarrow \mathrm{e}^{\mathrm{t} / 4}=\frac{5}{3} \\
& \Rightarrow \frac{\mathrm{t}}{4}=\ln 5-\ln 3 \quad \Rightarrow \mathrm{t}=0.5 \times 4 \\
& \mathrm{t}=2 \text { sec. Ans. }
\end{aligned}
$$

Q. 2 (D)
$\mathrm{U}_{\mathrm{i}}=\frac{1}{2}(2) \mathrm{V}^{2}, \mathrm{~V}_{\text {common }}=\frac{\mathrm{V}}{5}$

$\mathrm{U}_{\mathrm{f}}=\frac{1}{2}(2+8)\left(\frac{\mathrm{V}}{5}\right)^{2}$
$\frac{U_{i}-U_{f}}{U_{i}} \times 100=\frac{V^{2}-\frac{V^{2}}{5}}{V^{2}} \times 100$
$\frac{4}{5} \times 100=80 \%$ Ans.

Q. 3 (C)
$\mathrm{q}_{3}=\frac{\mathrm{C}_{3}}{\mathrm{C}_{2}+\mathrm{C}_{3}} \cdot \mathrm{Q}$
$\mathrm{q}_{3}=\frac{3}{3+2} \times 80=\frac{3}{5} \times 80=48 \mu \mathrm{C}$
Q. 4 (B,D)

When switch S_{1} is released charge on C_{1} is $2 \mathrm{CV}_{0}$ (on upper plate)
When switch S_{2} is released charge on C_{1} is $C V_{0}$ (on upper plate) and charge on C_{2} is CV_{0} (on upper plate) When switch S_{3} is released charge on C_{1} is $C V_{0}$ (on upper plate) and charge on C_{2} is $-\mathrm{CV}_{0}$ (on upper plate)
Q. 5 (A), (D)

$$
\begin{aligned}
& \mathrm{C}= \frac{\mathrm{K} \varepsilon_{0} \mathrm{~A}}{3 \mathrm{~d}}+\frac{2 \varepsilon_{0} \mathrm{~A}}{3 \mathrm{~d}} \\
& \mathrm{C}_{1}=\frac{\mathrm{K} \varepsilon_{0} \mathrm{~A}}{3 \mathrm{~d}} \\
& \frac{\mathrm{C}}{\mathrm{C}_{1}}=\frac{2+\mathrm{K}}{\mathrm{~K}} \text { Ans. (D) } \\
& \mathrm{E}_{1}=\mathrm{E}_{2}=\frac{\mathrm{V}}{\mathrm{~d}} \\
& \Rightarrow \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=1 \text { Ans. (A) } \\
& \mathrm{Q}_{1}=C_{1} \mathrm{~V}=\frac{\mathrm{K} \varepsilon_{0} \mathrm{~A}}{3 \mathrm{~d}} \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Q}_{2}=\mathrm{C}_{2} \mathrm{~V}=\frac{2 \varepsilon_{0} \mathrm{~A}}{3 \mathrm{~d}} \mathrm{~V} \\
\Rightarrow & \frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{K}}{2}
\end{aligned}
$$

Q. 7
Q. 8
(C)

The line charge \& cylinder will behave as capacitor filled with conductor i.e. resistance. It will be like a discharging $R C$ circuit.
Hence, (B)
.7 (A,B,C,D)
(D)

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{C}}=\frac{1}{2} \mathrm{CV}_{0}^{2} \\
& \mathrm{E}_{\mathrm{D}}=\mathrm{V}_{0} \mathrm{CV}_{0}-\frac{1}{2} \mathrm{CV}_{0}^{2}=\frac{1}{2} \mathrm{CV}_{0}^{2} \\
& \therefore \mathrm{E}_{\mathrm{C}}=\mathrm{E}_{\mathrm{D}}
\end{aligned}
$$

Q. 9 (B)
$\mathrm{E}_{\mathrm{D}_{1}}=\frac{\mathrm{V}_{0}}{3} \frac{C V_{0}}{3}-\frac{1}{2} \mathrm{C} \cdot\left(\frac{\mathrm{V}_{0}}{3}\right)^{2}=\frac{\mathrm{CV}_{0}^{2}}{9}-\frac{\mathrm{CV}_{0}^{2}}{18}$
$=\frac{\mathrm{CV}_{0}^{2}}{18}$
$\mathrm{E}_{\mathrm{D}_{2}}=\frac{2 \mathrm{~V}_{0}}{3}\left[\frac{2 \mathrm{CV}_{0}}{3}-\frac{\mathrm{CV}_{0}}{3}\right]$
$-\left[\frac{1}{2} \mathrm{C}\left(\frac{2 \mathrm{~V}_{0}}{3}\right)^{2}-\frac{1}{2} \mathrm{C} .\left(\frac{\mathrm{V}_{0}}{3}\right)^{2}\right]$
$=\frac{2 \mathrm{~V}_{0}}{3}\left[\frac{\mathrm{CV}_{0}}{3}\right]-\frac{1}{2} \mathrm{C}\left[\frac{4 \mathrm{~V}_{0}^{2}}{9}-\frac{\mathrm{V}_{0}^{2}}{9}\right]$
$=\left(\frac{2}{9}-\frac{1}{2 \times 9} \times 3\right) \mathrm{CV}_{0}^{2}=\left(\frac{2}{9}-\frac{1}{6}\right) \mathrm{CV}_{0}^{2}$
$=\left(\frac{12-9}{9 \times 6}\right) \mathrm{CV}_{0}^{2}$
$\mathrm{E}_{\mathrm{D}_{2}}=\frac{1}{18} \mathrm{CV}_{0}^{2}$
$\mathrm{E}_{\mathrm{D}_{3}}=\mathrm{V}_{0}\left[\mathrm{CV}_{0}-\frac{2 \mathrm{CV}_{0}^{2}}{3}\right]-\left[\frac{1}{2} \mathrm{CV}_{0}^{2}-\frac{1}{2} \mathrm{C}\left(\frac{2 \mathrm{~V}_{0}}{3}\right)^{2}\right]$

$$
\begin{aligned}
& =\frac{1}{3} \mathrm{CV}_{0}^{2}-\frac{1}{2} \mathrm{CV}_{0}^{2}\left[1-\frac{4}{9}\right] \\
& =\left(\frac{1}{3}-\frac{5}{18}\right) \mathrm{CV}_{0}^{2}=\left(\frac{6-5}{18}\right) \mathrm{CV}_{0}^{2}=\left(\frac{1}{18}\right) \mathrm{CV}_{0}^{2}
\end{aligned}
$$

Total $=\left(\frac{1}{18}+\frac{1}{18}+\frac{1}{18}\right) \mathrm{CV}_{0}^{2}$

$$
=\frac{3}{18} \mathrm{CV}_{0}^{2}
$$

$$
\mathrm{E}_{\mathrm{D}}=\frac{3}{9}\left[\frac{1}{2} \mathrm{CV}_{0}^{2}\right]=\frac{1}{3}\left(\frac{1}{2} \mathrm{CV}_{0}^{2}\right)
$$

Q. $10 \quad$ [1.50]

Applying loop rule
$\frac{5}{1}-\frac{3}{\epsilon_{\mathrm{r}}}-\frac{3}{1}=0$
$\frac{3}{\epsilon_{\mathrm{r}}}=2$
$\epsilon_{\mathrm{r}}=1.50$
Q. 11 (1.00)

$\delta=\mathrm{dx}=\frac{\mathrm{d}}{\mathrm{N}} \& \frac{\mathrm{~m}}{\mathrm{~N}}=\frac{\mathrm{x}}{\mathrm{d}}$
$\mathrm{K}_{\mathrm{m}}=\mathrm{K}\left(1+\frac{\mathrm{m}}{\mathrm{N}}\right)$

$$
\begin{aligned}
& \Rightarrow K_{\mathrm{m}}=\mathrm{K}\left(1+\frac{\mathrm{x}}{\mathrm{~d}}\right) \\
& \mathrm{C}^{\prime}=\frac{\mathrm{K}_{\mathrm{m}} \mathrm{~A} \epsilon_{0}}{\mathrm{dx}} \\
& \frac{1}{\mathrm{C}_{\mathrm{eq}}}=\int_{0}^{\mathrm{d}} \frac{\mathrm{dx}}{\mathrm{~K}_{\mathrm{m}} \mathrm{~A} \epsilon_{0}}=\frac{1}{\mathrm{KA} \epsilon_{0}} \int_{0}^{\mathrm{d}} \frac{\mathrm{dx}}{\left(1+\frac{\mathrm{x}}{\mathrm{~d}}\right)} \\
& \Rightarrow \frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{\mathrm{d}}{\mathrm{KA} \epsilon_{0}}\left[\ln \left(1+\frac{\mathrm{x}}{\mathrm{~d}}\right)\right]_{0}^{\mathrm{d}} \\
& \Rightarrow \frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{\mathrm{d}}{\mathrm{KA} \epsilon_{0}}[\ln 2-\ln (1)] \\
& \Rightarrow \mathrm{C}_{\mathrm{eq}}=\frac{\mathrm{KA} \epsilon_{0}}{\mathrm{~d} \ell \mathrm{n} 2} \Rightarrow \alpha=1
\end{aligned}
$$

Current Electricity

EXERCISES

ELEMENTRY

Q. 1
 (2)

Q. 2 (2)
Q. 3 (2)

Order of drift velocity $=10^{-4} \mathrm{~m} / \mathrm{sec}=10^{-2} \mathrm{~cm} / \mathrm{sec}$
Q. 4 (4)

In case of stretching of wire $\mathrm{R} \propto l^{2}$
\Rightarrow If length becomes 3 times so Resistance becomes 9 times i.e. $\mathrm{R}^{\prime}=9 \times 20=180 \Omega$
Q. 5 (1)

Because with rise in temperature resistance of conductor increase, so graph between V and i becomes non linear.
Q. 6 (2)
$R=\frac{\rho L}{A} \Rightarrow 0.7=\frac{\rho \times 1}{\frac{22}{7}\left(1 \times 10^{-3}\right)^{2}}$
$\rho=2.2 \times 10^{-6} \mathrm{ohm}-\mathrm{m}$.
Q. 7 (2)
$\mathrm{R} \propto \frac{1}{\mathrm{~A}} \Rightarrow \mathrm{R} \propto \frac{1}{\mathrm{~A}^{2}} \propto \frac{1}{\mathrm{~d}^{2}}$
[$d=$ diameter of wire]
Q. 8 (2)

In the absence of external electric field mean velocity of free electron $\left(\mathrm{V}_{\mathrm{rms}}\right)$ is given by $\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{KT}}{\mathrm{m}}} \Rightarrow$ $\mathrm{V}_{\mathrm{rms}} \propto \sqrt{\mathrm{T}}$.
Q. 9 (2)

Specific resistance $k \frac{E}{i}$
Q. 10 (3)

Ohm's Law is not obeyed by semiconductors.
Q. 11 (4)
$\mathrm{R}=91 \times 10^{2} \approx 9.1 \mathrm{k} \Omega$.
Q. 12 (2)

Resistance of parallel group $=\frac{R}{2}$
\therefore Total equivalent resistance $=4 \times \frac{R}{2}=2 R$.
Q. 13 (3)

Resistance of 1 ohm group $=\frac{\mathrm{R}}{\mathrm{n}}=\frac{1}{3} \Omega$
This is in series with $\frac{2}{3} \Omega$ resistor.
\therefore Total resistance $=\frac{2}{3}+\frac{1}{3}=\frac{3}{3} \Omega=1 \Omega$.
Q. 14 (4)

The circuit reduces to

$$
R_{A B}=\frac{9 \times 6}{9+6}=\frac{9 \times 6}{15}=\frac{18}{5}=3.6 \Omega
$$

Q. 15 (2)

Given circuit is equivalent to

So the equivalent resistance between points A and B is equal to $R=\frac{6 \times 3}{6+3}=2 \Omega$.
Q. 16 (1)

According to the problem, we arrange four resistance as follows

Equivalent resistance $=\frac{20 \times 20}{40}=10 \Omega$.
Q. 17 (2)

$$
R_{\mathrm{AB}}=\frac{24 \times 12}{(24+12)}=8 \Omega
$$

Q. 18 (4)

According to the principle of Wheatstone's bridge, the effective resistance between the given points is 4Ω.

Q. 19 (3)

Q. 20 (3)

The given circuit can be redrawn as follows

$\Rightarrow \mathrm{R}_{\mathrm{eq}}=5 \Omega$.

Q. 21 (2)

The figure can be drawn as follows

$\Rightarrow \mathrm{R}_{\mathrm{AB}}=5 \Omega$.
Q. 22 (3)

$\mathrm{R}_{\mathrm{AB}}=2+\frac{1}{3}=2 \frac{1}{3} \Omega$.
Q. 23 (2)

By balanced Wheatstone bridge condition $\frac{16}{X}=\frac{4}{0.5}$
$\Rightarrow X=\frac{8}{4}=2 \Omega$.
Q. 24 (3)

Hence $\mathrm{R}_{\mathrm{eq}}=\frac{2 \mathrm{R}}{3}$.
Q. 25 (2)

For balanced Wheatstone bridge $\frac{P}{Q}=\frac{R}{S}$
$\Rightarrow \frac{12}{(1 / 2)}=\frac{x+6}{(1 / 2)} \Rightarrow x=6 \Omega$.
Q. 26 (2)

Resistance across $X Y=\frac{2}{3} \Omega$

Total resistance
$=2+\frac{2}{3}+\frac{8}{3} \Omega$
Current through ammeter $=\frac{2}{8 / 3}=\frac{6}{8}=\frac{3}{4} \mathrm{~A}$

Q. 27 (2)

The ${ }_{10}$ circuit will be as shown

Q. 28 (3)

Current through 6Ω resistance in parallel with 3Ω resistance $=0.4 \mathrm{~A}$
So total current $=0.8+0.4=1.2 \mathrm{~A}$
Potential drop across $4 \Omega=1.2 \times 4=4.8 \mathrm{~V}$.

Q. 29 (4)

Given circuit is a balanced Wheatstone bridge circuit. So there will be no change in equivalent resistance. Hence no further current will be drawn.
Q. 30 (1)

The given circuit is a balanced Wheatstone bridge type, hence it can be simplified as follows

Q. 31 (2)

Let current through 5Ω resistance be i. Then
$\mathrm{i} \times 25=(2.1-\mathrm{i}) 10 \Rightarrow \mathrm{i}=\frac{10}{35} \times 2.1=0.6 \mathrm{~A}$.

Q. 32 (4)

Since $\mathrm{E}_{1}(10 \mathrm{~V})>\mathrm{E}_{2}(4 \mathrm{~V})$
So current in the circuit will be clockwise.

Applying Kirchoff's voltage law
$-1 \times \mathrm{i}+10-4-2 \times \mathrm{i}-3 \mathrm{i}=0$
$\Rightarrow \mathrm{i}=1 \mathrm{~A}(\mathrm{a}$ to b via e)
\therefore Current $=\frac{\mathrm{V}}{\mathrm{R}}=\frac{10-4}{6}=1.0$ ampere
Q. 33 (3)

In short circuiting $R=0$, so $V=0$
Q. 34 (1)

Total e.m.f. $=n E$, Total resistance $R+n r \Rightarrow \mathrm{i}=\frac{\mathrm{nE}}{\mathrm{R}+\mathrm{nr}}$.
Q. 35 (1)

Applying Kirchhoff law
$(2+2)=(0.1+0.3+0.2) i \Rightarrow \mathrm{i}=\frac{20}{3} \mathrm{~A}$
Hence potential difference across A
$=2-0.1 \times \frac{20}{3}=\frac{4}{3} \mathrm{~V}$ (less than 2 V).
and similarly across B will be zero.
Q. 36 (4)
$\mathrm{V}_{\mathrm{AB}}=4=\frac{5 \mathrm{X}+2 \times 10}{\mathrm{X}+10} \Rightarrow \mathrm{X}=20 \Omega$.

Q. 37 (3)

Since the current coming out from the positive terminal is equal to the current entering the negative terminal, therefore, current in the respective loop will remain confined in the loop itself.
\therefore current through 2Ω resistor $=0$.
Q. 38 (3)

By Kirchhoff's current law.
Q. 39 (1)

Potential gradient $=\frac{e}{\left(R+R_{h}+r\right)} \frac{R}{L}$
$=\frac{2}{(15+5+0)} \times \frac{5}{1}=0.5 \frac{\mathrm{~V}}{\mathrm{~m}}=0.005 \frac{\mathrm{~V}}{\mathrm{~cm}}$.

Q. 40 (3)

$\mathrm{S}=\frac{\mathrm{i}_{\mathrm{g}} \mathrm{G}}{\left(\mathrm{i}-\mathrm{i}_{\mathrm{g}}\right)}=\frac{1 \times 0.018}{10-1}=\frac{0.018}{9}=0.002 \Omega$.
Q. 41 (2)

Suppose resistance R is connected in series with voltmeter as shown.

By Ohm's law
$\mathrm{i}_{\mathrm{g}} \cdot \mathrm{R}=(\mathrm{n}-1) \mathrm{V}$
$\Rightarrow R=(\mathrm{n}-1) \mathrm{G}$ (where $\mathrm{i}_{\mathrm{g}}=\frac{\mathrm{V}}{\mathrm{G}}$).

Q. 42 (3)

If resistance of ammeter is r then

$$
20=(\mathrm{R}+\mathrm{r}) 4 \Rightarrow \mathrm{R}+\mathrm{r}=5 \Rightarrow \mathrm{R}<5 \Omega
$$

Q. 43 (3)

By Wheatstone bridge, $\frac{R}{80}=\frac{A C}{B C}=\frac{20}{80} \Rightarrow R=20 \Omega$.
Q. 44 (3)

$$
2 R>20 \Rightarrow \mathrm{R}>10 \Omega
$$

Q. 45 (4)

Resistance between A and B $=\frac{1000 \times 500}{(1500)}=\frac{1000}{3}$

So, equivalent resistance of the circuit

$$
\mathrm{R}_{\mathrm{eq}}=500+\frac{1000}{3}=\frac{2500}{3}
$$

\therefore Current drawn from the cell

$$
i=\frac{10}{(2500 / 3)}=\frac{3}{250} \mathrm{~A}
$$

Reading of voltmeter i.e. potential difference across 500Ω resistor is 4 V .
Q. 46 (4)
$\mathrm{E}=\frac{\mathrm{e}}{\left(\mathrm{R}+\mathrm{R}_{\mathrm{h}}+\mathrm{r}\right)} \frac{\mathrm{R}}{\mathrm{L}} \times l$
$\Rightarrow \mathbf{0 . 4}=\frac{5}{(5+45+0)} \times \frac{5}{10} \times l 0$
$\Rightarrow 1=8 \mathrm{~m}$.

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (3)

The drift velocity of electrons in a conducting wire is of the order of $1 \mathrm{~mm} / \mathrm{s}$. But electric field is set up in the wire very quickly, producing a current through each cross section, almost instantaneously.
Q. 2 (4)

In the presence of an applied electric field (\vec{E}) in a metallic conductor. The electrons also move randomly but slowly drift in a direction opposite to $\overrightarrow{\mathrm{E}}$.
Q. 3 (1)
Q. 4 (4)
Q. 5 (3)

Given that $\mathrm{V}_{\mathrm{d}_{1}}=\mathrm{v}, \mathrm{V}_{\mathrm{d}_{2}}=$?
We know that
$\mathrm{I}=\mathrm{neAv}_{\mathrm{d}}$

$$
\Rightarrow \quad V_{d} \propto \frac{1}{A} \propto \frac{1}{\frac{\pi d^{2}}{4}} \propto \frac{1}{d^{2}}
$$

$$
\frac{V_{d_{1}}}{V_{d_{2}}}=\frac{(d / 2)^{2}}{d^{2}}=\frac{1}{4}
$$

$$
\mathrm{V}_{\mathrm{d}_{2}}=4 \mathrm{~V}
$$

Q. 6 (2)
$v=\sqrt{\frac{3 R T}{m}}$
$v \propto \sqrt{T}$
Q. 7 (3)
$j=\frac{i}{A}$ current density inversely proportional to area of cross section
Q. 8 (4)

Copper is metal and germanium is semiconductor. Resistance of a metal decreases and that of a semiconductor increases with decrease in temperature.
Q. 9 (2)
Q. 10 (4)

During stretching volume is constant
$\mathrm{Al}=\mathrm{A}^{\prime}$ (31)
$\Rightarrow A^{\prime}=A / 3$
$\frac{R^{\prime}}{R}=\frac{\rho 3 \ell}{A^{\prime} \frac{\rho \ell}{A}}, R^{\prime}=\frac{3 A}{A^{\prime}} \times R$
Put A^{\prime} and R from above $\mathrm{R}^{\prime}=\mathrm{R}_{\text {new }}=9 \mathrm{R}=180 \Omega$
Q. 11 (2)
$\mathrm{R} \downarrow$ (Resistance decreases which increase of temperature)
Q. 12 (2)

Given that $\mathrm{l}=5 \mathrm{~m}, \mathrm{~d}=10 \mathrm{~cm} .=0.1 \mathrm{~m}$.
$\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}}=\frac{17 \times 10^{-8} \times 5}{\frac{\pi \times 0.095^{2}}{4}}=5.7 \times 10^{-5} \Omega$
Q. 13 (2)

During stretching volume remains constant

$$
\begin{aligned}
& \mathrm{R}^{\prime}=4 \mathrm{R} \\
& \mathrm{Ax}=\mathrm{A}^{\prime}(0.5 \ell+\mathrm{x})
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime}=\frac{\mathrm{Ax}}{0.5 \ell+\mathrm{x}} \tag{1}
\end{equation*}
$$

$\Rightarrow \frac{4 \rho \ell}{A}=\frac{\rho(\ell-x)}{A}+\frac{\rho(0.5 \ell+x)}{A^{\prime}}$
....(2)
Put value of A^{\prime} in equation (2) from equation (1)
$\Rightarrow \frac{4 \rho \ell}{A}=\frac{\rho(\ell-x)}{A}+\frac{\rho(0.5 \ell+x)^{2}}{A x}$
$\Rightarrow 4 \ell x=\ell x-x^{2}+(0.5 \ell)^{2}+\ell x+x^{2}$
After solving $x=(1 / 8) \ell$
Q. 14 (2)

Given that $\mathrm{l}=15 \mathrm{~m}, \mathrm{~A}=6.0 \times 10^{-7} \mathrm{~m}^{2}$.
$\mathrm{R}=5 \Omega, \rho=$?
$\rho=\frac{R A}{l}=\frac{5 \times 6 \times 10^{-7}}{15}=0.2 \times 10^{-6} \Omega \mathrm{~m}$
Q. 15 (3)

Given that $\mathrm{l}_{1}=20 \mathrm{~cm}, \mathrm{R}_{1}=5 \Omega$,
$\mathrm{l}_{2}=40 \mathrm{~cm}, \mathrm{R}_{2}=$?
During stretching volume of wire is constant
$20 A=40 A^{\prime} \Rightarrow A^{\prime}=A / 2$
We know that $R=\frac{\rho l}{A}$
$\frac{R_{2}}{R_{1}}=\frac{I_{2}}{I_{1}} \times \frac{\mathrm{A}}{\mathrm{A}^{\prime}}=\frac{40}{20} \times \frac{\mathrm{A}}{\frac{\mathrm{A}}{2}}$
$R_{2}=20 \Omega$
Q. 16 (3)

In series circuit current is same

$$
\mathrm{i}=\mathrm{n}_{1} \mathrm{eA} \mathrm{~V}_{\mathrm{d}_{1}}, \mathrm{i}=\mathrm{n}_{2} \mathrm{eA} \mathrm{~V}_{\mathrm{d}_{2}}, \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{V}_{\mathrm{d}_{2}}}{\mathrm{~V}_{\mathrm{d}_{1}}}=\frac{4}{1}
$$

Q. 17 (3)

Given that $v_{d}{ }^{\prime}=2 v_{d}$
$\mathrm{I}=\mathrm{neAv}_{\mathrm{d}}, \mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{I}^{\prime}=\operatorname{neA}^{\prime} v_{\mathrm{d}}{ }^{\prime}, \mathrm{A}^{\prime}=\frac{\pi \mathrm{r}^{2}}{4}$
$I^{\prime}=n e \frac{\pi r^{2}}{4} v_{d}{ }^{\prime}$
$I^{\prime}=n e \frac{\pi r^{2}}{4} .2 V_{d}$
$I^{\prime}=I / 2$
Q. 18 (3)
$y: \rho=\rho_{0}(1+\alpha \Delta T)$
α is -ve for semi conductor
$\mathrm{z}:$ temp $\uparrow \tau \downarrow$ Hence rate of collision \uparrow
Q. 19 (2)
(ii) (3)
(a) $\mathrm{R}_{1}=\mathrm{R}_{01}\left(1+\alpha_{1} \Delta \theta\right)=600(1+0.001 \times 30)=618 \Omega$
$\mathrm{R}_{2}=\mathrm{R}_{02}\left(1+\alpha_{2} \Delta \theta\right)=300(1+0.004 \times 30)=336 \Omega$
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}=618+336=954 \Omega$
(b) $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{0 \text { eq }}\left(1+\alpha_{\text {eq }} \Delta \theta\right) 954=900(1+\alpha 30) \alpha=$ $\frac{54}{900 \times 30}=\frac{1}{500}$ degree $^{-1}$
Q. 20 (4)
$\mathrm{i}_{1}=\mathrm{ne} A V, \mathrm{i}_{2}=\mathrm{n}(2 \mathrm{e}) \mathrm{Av} / 4$
$\mathrm{i}=\mathrm{i}_{1}+\mathrm{i}_{2}=\frac{3 n \mathrm{neAV}}{2}$
Q. 21 (2)
we no that $\mathrm{I}=\mathrm{neAv}_{\mathrm{d}}$
$V_{d}=\frac{I}{n e A} \propto \frac{I}{r^{2}}$
$\frac{V_{d_{1}}}{V_{d_{2}}}=\left(\frac{I_{1}}{I_{2}}\right)\left(\frac{r_{2}}{r_{1}}\right)^{2}=\left(\frac{4}{1}\right)\left(\frac{2}{1}\right)^{2}=16$
Q. 22 (2)

$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}} \Rightarrow \frac{\mathrm{I}}{\mathrm{V}}=\frac{1}{\mathrm{R}}$
$\tan \theta=1 / R=w+\theta$
$\because \theta_{1}>\theta_{2}$
$\Rightarrow \mathrm{R}_{1}<\mathrm{R}_{2} \Rightarrow \mathrm{~T}_{1}<\mathrm{T}_{2}$
$\because \mathrm{T} \uparrow \mathrm{R} \uparrow$
Q. 23 (2)
in this question $\mathrm{n} \rightarrow \mathrm{p}$
$\mathrm{A} \rightarrow \mathrm{s}, \mathrm{e} \rightarrow \mathrm{q}$
$\mathrm{i}=\mathrm{neAV}_{\mathrm{d}}$
$\frac{i}{\rho s q}=V_{d}$
Q. 24 (3)

$$
\mathrm{i}=\mathrm{neAV}_{\mathrm{d}}
$$

i is same so
$A \uparrow V_{d} \downarrow$
Q. 25 (1)

$$
\mathrm{R}=\frac{\rho \ell}{\mathrm{A}}
$$

$$
\mathrm{R}_{\text {square }}=\frac{3.5 \times 10^{-5} \times 50 \times 10^{-2}}{\left(10^{-2}\right)^{2}}
$$

$$
=\frac{35}{2} \times 10^{-2} \Omega
$$

$$
\begin{aligned}
\mathrm{R}_{\text {rectangle }} & =\frac{3.5 \times 10^{-5} \times 2\left[1 \times 10^{-2}\right]}{\left(50 \times 10^{-4}\right)} \\
& =7 \times 10^{-5}
\end{aligned}
$$

Q. 26 (1)
$\frac{1}{R_{\text {eq }}}=\frac{10}{R}+\frac{10}{R}+\ldots \ldots \ldots 10$ times
$R_{\text {eq }}=R / 100$
Q. 27 (2)

$$
\mathrm{R}_{\mathrm{eq}} \cdot=2+\frac{25}{2}+8=\frac{45}{2} \Omega
$$

Q. 28 (4)

Q. 29 (2)

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq}}=7+4+9=20 \Omega \\
& \mathrm{~V}=\mathrm{IR}_{\mathrm{eq}}=1 \times 20=20 \mathrm{~V}
\end{aligned}
$$

Q. 30 (1)

Let I be the current flow
$8-\mathrm{IR}-\mathrm{IR} / 4=1$
$I=\frac{28}{5 R}$
$8-\frac{28}{5 R} \times R=V_{j}$
$\mathrm{V}_{\mathrm{j}}=2.4 \mathrm{~V}$
Q. 31 (1)
initial $\mathrm{R}_{\mathrm{eq}}=5 \Omega$

final $\quad \mathrm{R}_{\mathrm{eq}}=3 \Omega$ change in resistance $=5-3=2 \Omega$
Q. 32 (3)

This simplified circuit is shown in the figure.

Therefore, current $\mathrm{i}=\frac{2}{20}=\frac{1}{10} \mathrm{~A}$
Q. 33 (4)

$\mathrm{E}-\mathrm{ir}=\mathrm{V}$
$V=E-\frac{E}{R+r} . r$
at $\mathrm{R}=0$
$\mathrm{V}=0$
Q. 34 (1)

From V:IR
When S_{1} is closed $V_{1}=\left(\frac{E}{4 R}\right) 3 R=\frac{3 E}{4}=0.75 E$

When S_{2} is closed $V_{2}=\frac{E}{7 R} \cdot 6 R=\frac{6 E}{7}=0.85 E$
When both $\mathrm{S}_{1} \& \mathrm{~S}_{2}$ are closed
$V_{3}=\frac{E}{3 R} \times 2 R=\frac{2 E}{3}=0.6 E$
$\mathrm{V}_{2}>\mathrm{V}_{1}>\mathrm{V}_{3}$
Q. 35 (3)

For $\mathrm{P}_{\text {max }} \Rightarrow \mathrm{r}=\mathrm{R}_{\mathrm{eq}}, \mathrm{R}_{\mathrm{eq}}=\mathrm{R} / 3$
$0.1=\frac{R}{3} \Rightarrow R=0.3 \Omega$
Q. 36 (4)

All resistances are parallel so potential is same
$\mathrm{V}=0.3 \times 20=6 \mathrm{~V}$
$i_{1}: i_{1}: i_{3}=\frac{1}{R_{1}}: \frac{1}{20}: \frac{1}{15}$
$=60: 3 \mathrm{R}_{1}: 4 \mathrm{R}_{1}$
$\Rightarrow 0.3=\frac{3 \mathrm{R}_{1}}{60+7 \mathrm{R}_{1}} \times(0.8)$
$\Rightarrow \mathrm{R}_{1}=60 \Omega$
Q. 37 (2)

$\frac{\mathrm{V}}{2 \mathrm{R}_{1}}=\frac{\mathrm{V}}{2 \mathrm{R}_{2}}+\frac{\mathrm{V}}{4 \mathrm{R}_{1}}$
$\frac{1}{\mathrm{R}_{1}}=\frac{1}{\mathrm{R}_{2}}+\frac{1}{2 \mathrm{R}_{1}} \Rightarrow \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=2$

Q. 38 (2)

After redraw circuit all resistances are parellel

Q. 39 (1)
$\mathrm{R}_{\mathrm{eq}}=2+\frac{4}{2}+\frac{15}{3}+\mathrm{R}_{\mathrm{A}}=9+\mathrm{R}_{\mathrm{A}}$
$I=\frac{V}{R_{\text {eq }}} \Rightarrow 1=\frac{10}{9+R_{A}} \quad \Rightarrow R_{A}=1 \Omega$
if 4Ω replace by 2Ω resistance then
$R_{e q}=2+\frac{2}{2}+\frac{15}{3}+1=9 \Omega$
$\mathrm{I}=\frac{10}{9} \mathrm{amp}$
Q. 40 (2)
$625(\mathrm{P})=\mathrm{SQ}$
....(1)
when P, Q is interchanged
$\mathrm{Q}(676)=\mathrm{PS}$
....(2)
Fromeq. (1) \& (2)

$$
\begin{aligned}
& \frac{676}{S}=\frac{S}{625} \\
& S=650 \Omega
\end{aligned}
$$

Q. 41 (2)

In an electric circuit containing a battery, the positive charge inside the battery may go from the positive terminal to the negative terminal
Q. 42 (4)

Given $\mathrm{r} \propto \mathrm{i} \Rightarrow \mathrm{r}=\mathrm{ki}$
$\mathrm{V}=\mathrm{E}-\mathrm{ir}=\mathrm{E}-\mathrm{i}(\mathrm{ki})$
$V=-i^{2} k+E$

Q. 43 (2)
(1) $V=E-i r, V<E$
(2) $V=E+i r, V>E$
(3) $V=E$ (4) $V=E$
Q. 44 (1)

$\mathrm{E}_{\mathrm{q}}=\frac{\frac{4.5}{3}+\frac{3}{10}}{\frac{1}{3}+\frac{1}{10}}=\frac{54}{13}=\mathrm{V}$
$r_{e q}=\frac{3 \times 10}{13}=\frac{30}{13} \Omega$
$\mathrm{i}=\frac{54 / 13}{6+\frac{30}{13}}=\frac{54}{108}=\frac{1}{2} \mathrm{amp}$.
$\mathrm{V}_{6 \Omega}=\mathrm{i} . \mathrm{R}=\frac{1}{2} \times 6=3 \mathrm{~V}$
There fore current in 10Ω is zero.
Q. 45 (2)

$$
\begin{aligned}
\eta= & \frac{E-I r}{E}=1-\frac{r}{r+R}=\frac{R}{r+R}=0.6 \Rightarrow R=0.6 r+0.6 R \\
& r=\frac{4}{6} R=\frac{2 R}{3} \\
\Rightarrow & \eta=\frac{6 R}{r+6 R}=\frac{6 R}{\frac{2 R}{3}+6 R}=\frac{18 R}{2 R+18 R}=0.9=90 \%
\end{aligned}
$$

Q. 46 (3)

$$
\begin{aligned}
& E+i r=12.5 \text { Volt } \\
& E+(0.5 \times 1)=12.5 \\
& E=12 \text { volt }
\end{aligned}
$$

Q. 47 (4)

$\mathrm{E}-\mathrm{ir}=0$
$\mathrm{E}-\mathrm{ir}=\mathrm{V}$ (Discharging)
$\mathrm{E}+\mathrm{ir}=\mathrm{V}$ (Charging)
Q. 48 (1)

$\frac{\varepsilon_{1}+\varepsilon_{2}}{\varepsilon_{1}-\varepsilon_{2}}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}$
$\Rightarrow \varepsilon_{1}=\frac{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}{\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)} \varepsilon_{2}$
Q. 49 (3)
$\mathrm{i}=\frac{4}{4}=1 \mathrm{Amp}$

$$
\mathrm{V}=\mathrm{E}+\mathrm{ir}=2+1 \times 3=5 \mathrm{~V}
$$

Q. 50 (3)

$\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0$
$\frac{\mathrm{x}+4}{0.8}+\frac{\mathrm{x}}{0.8}+\frac{\mathrm{x}-4}{0.8}=0$
$\mathrm{x}=0$
i.e. there is no curent in 0.8Ω resistor

$$
\begin{aligned}
& \mathrm{i}_{1}=\mathrm{i}_{3}=\mathrm{i}=\frac{4}{0.8}=5 \mathrm{~A} \\
& \Rightarrow \mathrm{~V}=\mathrm{E}-\mathrm{ir}=1-(5)(0.2)=0
\end{aligned}
$$

Q. 51 (2)

Now $\mathrm{V}_{\mathrm{p}}=+2-4+\mathrm{V}_{\mathrm{Q}}$

$$
\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{Q}}=2 \mathrm{~V}
$$

Q. 52 (2)

$\frac{x-\varepsilon_{1}}{r_{1}}+\frac{x-\varepsilon_{2}}{r_{2}}+\frac{x-\varepsilon_{3}}{r_{3}}=0$
$\mathrm{x}=2$ volt
Q. 53 (3)

From circuit analysis we get
$i=\frac{18}{R+3}$
move in the circuit from point b to a
$\mathrm{V}_{\mathrm{b}}=-\frac{-18}{\mathrm{R}+3}(1)+3+\mathrm{V}_{\mathrm{a}}$
$\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}=0=-18+3 \mathrm{R}+9$
$\Rightarrow 3 \mathrm{R}=9$
$\mathrm{R}=3 \Omega$
Q. 54 (3)

$$
\begin{gathered}
I=\frac{20}{R+1}=10 \\
R=1 \Omega
\end{gathered}
$$

Q. 55 (2)

Let potential of junction is x , then current shown in circuit

Now $\frac{x-10}{10}+\frac{x-6}{20}+\frac{x-5}{30}=0$

$$
\mathrm{x}=8 \mathrm{~V}, \mathrm{i}_{1}=\frac{10-8}{10}=0.2 \mathrm{~A}
$$

Q. 56 (2)

Potential at C point may be greater than potential at point B. Therefore current flow in resistance may be from B to A.
Q. 57 (2)

Folding symmetry
Q. 58 (2)

Q59 (4)

$\mathrm{i}=\frac{\mathrm{nE}}{\mathrm{nr}}=\frac{\mathrm{E}}{\mathrm{r}}$
Independent of n
(1)
$i=\frac{E}{r / n}=\frac{n E}{r}$
Q. 61 (1)
$P=\left(\frac{E}{R+5}\right)^{2} R$
$\frac{\mathrm{dP}}{\mathrm{dR}}=0$ at $\mathrm{R}=5 \Omega$, so power is maximum at $\mathrm{R}=5 \Omega$,
Therefore increase continuously till $\mathrm{R}=5 \Omega$.

Q. 62 (1)

$\mathrm{R}_{2.5 \mathrm{~W}}=\frac{(110)^{2}}{2.5} \Omega, \mathrm{R}_{100 \mathrm{~W}}=\frac{(110)^{2}}{100} \Rightarrow \mathrm{R}_{2.5}>\mathrm{R}_{100}$.
In series current passes through both bulb are same $\mathrm{P}_{2.5}=\mathrm{i}^{2} \mathrm{R}_{2.5}, \mathrm{P}_{100}=\mathrm{i}^{2} \mathrm{R}_{100}$
$\mathrm{P}_{2.5}>\mathrm{P}_{100}$ due to $\mathrm{R}_{2.5}>\mathrm{R}_{100} \& \because \mathrm{P}_{2.5}>2.5 \mathrm{~W} \& \mathrm{P}_{100}<100$ W (can be verified)
Therefore 2.5 W bulb will fuse
Q. 63 (1)
$\mathrm{R}=\frac{(220)^{2}}{100}$
$R_{e q}=\frac{R}{3}+R=\frac{4 R}{3}=\frac{4(220)^{2}}{300}$
$\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}_{\mathrm{eq}}}=\frac{(220)^{2} \times 300}{4(220)^{2}}=\frac{300}{4}=75 \mathrm{~W}$

Q. 64 (2)

Resistance of one side $=0.1 \times 10=1 \Omega$

$$
\mathrm{R}_{\mathrm{eq}}=1 \Omega \mathrm{P}=\frac{\mathrm{v}^{2}}{\mathrm{R}_{\mathrm{eq}}}=\frac{(2)^{2}}{1}=4 \text { watt }
$$

Q. 65 (2)

Since, resistance in upper branch of the circuit is twice the resistance in lower branch. Hence, current there will be half.

Now, $\mathrm{P}_{4}=(\mathrm{i} / 2)^{2}(4)\left(\mathrm{P}=\mathrm{i}^{2} \mathrm{R}\right)$

$$
\mathrm{P}_{5}=(\mathrm{i})^{2}(5)
$$

or $\frac{P_{4}}{P_{5}}=\frac{1}{5}$
$\therefore P_{4}=\frac{P_{5}}{5}=\frac{10}{5}=2 \mathrm{cal} / \mathrm{s}$.

Q. 66 (3)

$$
\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{240 \times 240}{0.5}=115.2 \mathrm{KW}
$$

$$
\eta=\frac{115.2-15}{115.2} \times 100=89 \%
$$

Q. 67 (2)

Initially $H=\frac{v^{2}}{R}$
Now after cutting

Power in one branch

$$
=\frac{\mathrm{V}^{2}}{\mathrm{R} / \mathrm{n}}=\frac{\mathrm{nV} \mathrm{~V}^{2}}{\mathrm{R}}
$$

Total power $=\frac{n V^{2}}{R}+\frac{n V^{2}}{R}+\ldots=\frac{n^{2} V^{2}}{R}$
Q. 68 (2)
$\mathrm{H}=\frac{\mathrm{v}^{2}}{\mathrm{R}} \Delta \mathrm{t}, \& \mathrm{R}=\frac{\rho \ell}{\mathrm{A}}$
$H=\frac{A V^{2}}{\rho \ell} \Delta t$
$H \propto \frac{A}{\ell}$
$H \propto \frac{r^{2}}{\ell}$
Heat is doubled only when r, ℓ doubled
Q. 69 (3)
$\mathrm{R}=\frac{\mathrm{V}_{\text {rated }}^{2}}{\mathrm{P}_{\text {rated }}} \Rightarrow \mathrm{R} \propto \mathrm{V}_{\text {rated }}^{2}$
\because In series I is same.

$$
\text { Power }=I^{2} \mathrm{R} \propto \mathrm{~V}_{\text {rated }}^{2}
$$

Q. 70 (3)

$$
\mathrm{P}=\mathrm{V} . \mathrm{i}, \quad \mathrm{P}=\mathrm{E} . \ell . \mathrm{JA}
$$

$\frac{P}{\ell A}=E J$
Q. 71 (1)
$\mathrm{i}=\frac{\mathrm{dQ}}{\mathrm{dt}}=2-16 \mathrm{t}$
Heat $=R \int_{0}^{1 / 8}(2-16 t)^{2} \cdot d t, \frac{R}{6}$
Q. 72 (2)
$\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \quad \mathrm{R}=\frac{\rho \ell}{\mathrm{A}}$
$\mathrm{P}^{\prime}=\frac{\mathrm{V}^{2}}{0.9 \mathrm{R}} \quad \mathrm{R}^{\prime}=\frac{\rho(\ell-0.1 \ell)}{\mathrm{A}}$
$\mathrm{P}^{\prime}=\frac{1.11 \mathrm{~V}^{2}}{\mathrm{R}}, \mathrm{R}^{\prime}=0.9 \frac{\rho \ell}{\mathrm{~A}}$
$\mathrm{R}^{\prime}=\frac{0.9 \rho \ell}{\mathrm{~A}}$
$\mathrm{P}^{\prime}=\left(1+\frac{11}{100}\right) \mathrm{P}$
P^{\prime} increses by 11%.
Q. 73 (4)

We know that $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$

Then $\mathrm{R}_{\mathrm{A}}=\frac{(200)^{2}}{300}$

$R_{B}=\frac{(200)^{2}}{600}$
In series
$R_{e q}=R_{A}+R_{B} P=\frac{(200)^{2}}{\frac{(200)^{2}}{300}+\frac{(200)^{2}}{600}}$
$\mathrm{P}=200$ Watt
Q. 74 (1)

Situation shown in diagram $P=\frac{V^{2}}{R}$

Case I

Case II

$R_{1}=\frac{(200)^{2}}{60} \quad R_{2}=\frac{(200)^{2}}{100}$

200 V
In series combination
$R_{\text {eq }}=R_{1}+R_{2}=\frac{200^{2}}{60}+\frac{200^{2}}{100}=\frac{200^{2} \times 160}{60 \times 100}$
$\mathrm{P}=\frac{200^{2} \times 160}{60 \times 100}=37.5 \mathrm{~W}$
Q. 75 (1)
$\mathrm{R}=(120)^{2} / 60$

120

$$
\mathrm{P}=\frac{(40)^{2}}{(120)^{2}} \times 60,=6.7 \mathrm{Watt}
$$

Q. 76 (1)
$I^{2} R$ is maximum for R_{1} resistance $A s I>I_{1} \& I_{2}$

maximum power dissipation in R_{1}.
Q. 77 (2)

As $R_{\text {eq }}$ decreases $I_{\text {net }}$ increases hence current through X increases but as $I_{\text {net }}$ will now be distributed in $Y \& Z$, current in Y decreases.
Q. 78 (4)

From Maximum Power Transfer Theorem
$\mathrm{y}_{\text {max }}=\mathrm{R}+2 \Omega$
$\Rightarrow 5 \Omega=\mathrm{R}+2 \Omega \Rightarrow \mathrm{R}=3 \Omega$
Q. 79 (4)

From graph $\mathrm{I}=0 \Rightarrow$ Open ckt.
$V=y=E$

When $\mathrm{V}=0 . \mathrm{I}_{\text {max }}$

$$
\begin{gathered}
E=i r \\
y=x r \\
r=y / x
\end{gathered}
$$

Q. 80 (3)

$$
\mathrm{R}_{\mathrm{eq}}=200+\frac{300 \times 600}{300+600}+100=500 \Omega
$$

$$
\mathrm{I}=\frac{100}{500}=\frac{1}{5} \mathrm{amp}
$$

$$
I_{600}=\frac{\frac{1}{600}}{\frac{1}{300}+\frac{1}{600}} \times \frac{1}{5}=\frac{1}{15} \mathrm{amp}
$$

Reading of volt meter $=I_{600} R_{600}=\frac{1}{15} \times 600=40 \mathrm{~V}$
Q. 81 (2)

Given $\frac{15 \times i}{75}=0.75$
Now $i_{2}=\frac{60 \times i}{75}=\left[\frac{60 \times 0.75 \times 75}{15}\right]=3 \mathrm{~A}$
Q. 82 (1)
$\mathrm{R}_{\mathrm{eq}}=10+\frac{480 \times 20}{480+20}=10+\frac{96}{5}=\frac{146}{5}$
current passes through the battery.
$I=\frac{20 \times 5}{146}=\frac{100}{146}=\frac{50}{73} \mathrm{amp}$.
Q. 83 (3)

Case - I $I_{g}=\frac{E_{1}+E_{2}}{R_{g}+R+2 r} \Rightarrow 1=\frac{3}{R_{g}+R+2 r}$
$\Rightarrow \mathrm{R}_{\mathrm{g}}+\mathrm{R}+2 \mathrm{r}=3$
Case - II $E_{\text {eq }}=\mathrm{E}=1.5 \mathrm{~V}$

$$
\begin{align*}
& I_{g}=\frac{E_{e q}}{R_{g}+R+\frac{r}{2}} \Rightarrow 0.6=\frac{1.5}{R_{g}+R+\frac{r}{2}} \\
& \Rightarrow R_{g}+R+\frac{r}{2}=\frac{1.5}{0.6}=2.5 \ldots .(2) \tag{2}
\end{align*}
$$

from eq (1) and (2)

$$
\frac{3 r}{2}=0.5 \Rightarrow r=\frac{1}{3} \Omega
$$

Q. 84 (4)

$$
\begin{aligned}
& \mathrm{i}=\frac{2}{10+\mathrm{R}} \\
& \mathrm{x}=\frac{\mathrm{V}}{\ell}=\frac{2 \times 10}{(\mathrm{R}+10)} \cdot \frac{1}{100} \\
& \mathrm{~V}_{1}=\mathrm{x} \ell \Rightarrow 10 \times 10^{-3}=\frac{2 \times 10}{(\mathrm{R}+10)} \times \frac{40}{100}
\end{aligned}
$$

$$
\begin{aligned}
& R+10=\frac{8}{10 \times 10^{-3}} \\
& \Rightarrow R+10=800 \quad \Rightarrow R=790 \Omega
\end{aligned}
$$

Q. 85 (4)

$$
\begin{aligned}
& \frac{6}{R}=\frac{\ell}{x-\ell} \\
& \frac{6}{R}=\frac{30}{20} \Rightarrow R=4 \Omega
\end{aligned}
$$

Q. 86 (3)

High resistance in series

Q. 87 (3)

10 volt

$\mathrm{E}-\frac{\mathrm{Er}}{\mathrm{x}+\mathrm{r}}=10$ volt
$\frac{E x}{x+r}=10$ volt
$\frac{E}{r+x+y}=1$ volt
$\Rightarrow \mathrm{x}=1 \Omega$

$$
\frac{12+1}{1+r}=10
$$

$\Rightarrow \mathrm{r}=0.2 \Omega$
Q. 92 (3)

Given for galvanometer $r_{g}=90 \Omega, i=10 \mathrm{~mA}$
$\mathrm{i}_{\mathrm{g}}=10 \times 10^{-3}$
$\rightarrow \underset{r}{ } \rightarrow$

$$
\begin{aligned}
& \mathrm{V}=\mathrm{i}_{\mathrm{g}}\left(\mathrm{R}+\mathrm{r}_{\mathrm{g}}\right) \\
& \mathrm{V}=10^{-2}(1000) \\
& =10 \text { Volt } \\
& \mathrm{n}=\frac{10}{0.1}=100
\end{aligned}
$$

Q. 93 (4)

From circuit diagram voltmeter reading will be 12V

Q. 94 (2)

Voltmeter must be connected in parallel and Ammeter in series with the resistance in circuit.
Q. 95 (1)
$\mathrm{R}_{1} \times 60=\mathrm{R}_{2} \times 40$
....(1)
$\mathrm{R}_{1} \times 50=\frac{\mathrm{R}_{2} \times 10}{\mathrm{R}_{2}+10} \times 50$
Devide (2) by (1) $\frac{50 R_{1}}{60 R_{1}}=\frac{10 R_{2} \times 50}{\frac{R_{2}+10}{R_{2} \times 40}}$
$\mathrm{R}_{2}=5 \Omega, \mathrm{R}_{1}=\frac{10 \Omega}{3}$
Q. 96 (1)

Potential gradient $x=\frac{6}{1}$
$6 \ell=4 \Rightarrow \ell=\frac{2}{3} \mathrm{~m}$
Q. 97 (2)
case 1
$12 \times(100-\mathrm{x})=18 \times \mathrm{x}$
$1200-12 \mathrm{x}=18 \mathrm{x}$
$30 \mathrm{x}=1200$
$\mathrm{x}=40 \mathrm{~cm}$
case 2
$12 \times(100-x)=8 x$
$1200-12 x=8 x$
$\Rightarrow \mathrm{x}=60 \mathrm{~cm}$
Q. 98 (2)

$I=\frac{V}{r+R}$
$I=\frac{11}{10+1}=1 \mathrm{Amp}$,
Potential gradient $=x=\frac{11-1}{10}=\frac{1 \mathrm{volt}}{m}$
Q. 99

$\mathrm{E}_{1}=3 \mathrm{E}$
$1.5 \ell \rightarrow 3 \mathrm{E}, \mathrm{E} \rightarrow \frac{\ell}{2}$
Q. 100 (1)

In case of voltmeter $R_{e q}<R$ hence I $>\mathrm{I}_{0}$
As voltmeter always take some current from the circuit $\mathrm{V}<\mathrm{V}_{0}$
Q. 101
(4)

As Battery is connected in reverse order E_{1} will not be balanced on entire length of wire AB.
Q. 102 (3)

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1 (D)
$\mathrm{i}=\mathrm{neAV}_{\mathrm{d}}$
$\mathrm{V}=\mathrm{i} \mathrm{R}$
Q. 2 (A)
$R_{1}=\frac{\rho_{B} \ell_{B}}{A}\left(1+\alpha_{B} \Delta T\right)$
$\mathrm{R}_{2}=\frac{\rho_{\mathrm{C}} \ell_{\mathrm{C}}}{\mathrm{A}}\left(1+\alpha_{\mathrm{C}} \Delta \mathrm{T}\right)$
Req. $=\mathrm{R}_{1}+\mathrm{R}_{2}$
$R_{e q .}=\frac{\rho_{\mathrm{B}} \ell_{\mathrm{B}}}{\mathrm{A}}+\frac{\rho_{\mathrm{B}} \ell_{\mathrm{B}}}{\mathrm{A}} \alpha_{\mathrm{B}} \Delta \mathrm{T}+\frac{\rho_{\mathrm{C}} \ell_{\mathrm{C}}}{\mathrm{A}}+\frac{\rho_{\mathrm{C}} \ell_{\mathrm{C}}}{\mathrm{A}} \alpha_{\mathrm{C}} \Delta \mathrm{T}$
Net resistance is independent of temp.
$\Rightarrow \frac{\rho_{\mathrm{B}} \ell_{\mathrm{B}} \alpha_{\mathrm{B}} \Delta \mathrm{T}}{\mathrm{A}}+\frac{\rho_{\mathrm{C}} \ell_{\mathrm{C}} \alpha_{\mathrm{C}} \Delta \mathrm{T}}{\mathrm{A}}=0$

$$
\Rightarrow \frac{\ell_{\mathrm{B}}}{\ell_{\mathrm{C}}}=\left|\frac{\alpha_{\mathrm{C}} \rho_{\mathrm{C}}}{\rho_{\mathrm{B}} \alpha_{\mathrm{B}}}\right|
$$

Q. 3 (D)

Apply current density concept
$I=\int \vec{j} \cdot d \vec{A}$

$$
\begin{aligned}
& I=\left\{\begin{array}{lll}
J_{0}\left(\frac{x}{R}-1\right) & \text { for } & 0 \leq x<R / 2 \\
J_{0} \frac{x}{R} & \text { for } & \frac{R}{2} \leq x \leq R
\end{array}\right. \\
& i=\int_{0}^{R / 2} J_{0}\left(\frac{x}{R}-1\right) 2 \pi x d x+\int_{R / 2}^{R} J_{0} \frac{x}{R} 2 \pi x d x
\end{aligned}
$$

Q. 4 (C)

In parallel combination equivalent resistance $R_{e q}$ is less then the minimum value of any of resistance $R_{1}<R$ In series $R_{e q}$ is greater than maximum of resistance. R_{2} $>\mathrm{R}$.
Q. 5 (D)

$$
\begin{aligned}
& x=\frac{(2-x) 1}{3-x}, x^{2}-4 x+2=0 \\
& x=2 \pm \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{C E}{E D}=\frac{2-\sqrt{2}}{\sqrt{2}-1} \\
& \frac{C E}{E D}=\frac{(2-\sqrt{2})(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}=\frac{2 \sqrt{2}+2-2-\sqrt{2}}{1} \\
& \frac{C E}{E D}=\sqrt{2}
\end{aligned}
$$

Q. 6 (C)

For balanced condition
$R_{1} R_{3}=R_{4} R_{2}$
(A) No effect of emf of battery
(B) $\left(\mathrm{R}_{1}+10\right)\left(\mathrm{R}_{3}+10\right) \neq\left(\mathrm{R}_{2}+10\right)\left(\mathrm{R}_{4}+10\right)$ Incorrect
(C) $\left(5 R_{1}\right)\left(5 R_{3}\right)=\left(5 R_{2}\right)\left(5 R_{4}\right)$ $\mathrm{R}_{1} \mathrm{R}_{3}=\mathrm{R}_{2} \mathrm{R}_{4} \quad$ correct.
(D)

Q. 7 (A)

After circuit Analysis we get $\mathrm{R}_{\mathrm{eq}}=14 \Omega$
$\mathrm{I}=\frac{28}{14}=2 \mathrm{amp}$.
Q. 8 (B)
$V_{R}=\frac{E}{r+R} R=\frac{E}{\frac{r}{R}+1}$

$$
\mathrm{R} \rightarrow 0
$$

$$
V_{R}=0
$$

$\& R \rightarrow \infty \quad V_{R}=E$

Q. $9 \quad$ (D)

For ideal $\mathrm{r} \rightarrow 0$

$\mathrm{E}=\frac{\frac{10}{\mathrm{r}}+\frac{15}{1}}{\frac{1}{\mathrm{r}}+\frac{1}{1}}=\frac{10+15 \mathrm{r}}{1+\mathrm{r}}$
$\mathrm{E}=10 \mathrm{~V}$

Q. 10 (D)

$\mathrm{E}_{\mathrm{eq}}^{\mathrm{n}}=(\mathrm{n}-4) . \mathrm{E} \quad \mathrm{r}_{\mathrm{eq}}^{\mathrm{n}}=\mathrm{nr}$
From circuit analysis we get $\mathrm{V}=\mathrm{E}+$ ir

$$
\begin{equation*}
\mathrm{i}=\frac{(\mathrm{n}-4) \mathrm{E}}{\mathrm{nr}}, \quad \mathrm{~V}=\left[\mathrm{E}+\frac{(\mathrm{n}-4) \mathrm{E}}{\mathrm{nr}} \cdot \mathrm{r}\right]=2 \mathrm{E}\left(1-\frac{2}{\mathrm{n}}\right) \tag{1}
\end{equation*}
$$

Q. 11 (D)

Due to input symmetry potential drop in AC, AD and AE part is same. Therefore potential at C, D and E point is same.
$\mathrm{R}_{\mathrm{eq}}=\frac{7}{3} \Omega$

Q12 (A)

$$
\mathrm{r}_{\mathrm{eq}}=\mathrm{r}_{12}=\frac{\mathrm{r}}{2}
$$

$$
r_{e q}=r_{34}=\frac{r}{2}
$$

Q. 13 (B)

$$
\mathrm{i}=\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{\mathrm{R}+\mathrm{r}_{1}+\mathrm{r}_{2}}
$$

So for $\mathrm{E}_{2}-\mathrm{ir}_{2}<0$ (for increasing i)

$$
\begin{aligned}
& \mathrm{E}_{2}-\left(\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{\mathrm{R}+\mathrm{r}_{1}+\mathrm{r}_{2}}\right) \mathrm{r}_{2}<0 \\
\Rightarrow & \mathrm{E}_{2}\left(\mathrm{R}_{2}+\mathrm{r}_{1}\right)<\mathrm{E}_{1} \mathrm{r}_{2}
\end{aligned}
$$

Q. 14 (B)

due to input output symmetry potential at point $2,4,5$, are equal and potential at point $3,6,8$ are equal

$R_{e q}=\frac{R}{3}+\frac{\mathrm{R}}{6}+\frac{\mathrm{R}}{3}=\frac{5}{6} \mathrm{R}$
Q. 15 (A)

due to input output symmetry, here no current passes through resistance 2 to 6 and 4 to 8 . Equivalent circuit is
$R_{e q}=\frac{1}{3 R}+\frac{1}{2 R}+\frac{1}{2 R}$
$R_{\text {eq }}=\frac{4}{3} R$
Q. 16 (B)

For maximum power $r_{\text {eq }}=R_{\text {eq }}$
$\Rightarrow 2+\frac{6 \mathrm{x}}{6+\mathrm{x}}=4 \Rightarrow \frac{12+8 \mathrm{x}}{6+\mathrm{x}}=4$
$\Rightarrow 12+8 \mathrm{x}=24+4 \mathrm{x} \Rightarrow 4 \mathrm{x}=12$
$\mathrm{x}=3 \Omega$
Q. 17 (D)

For maximum power across the resistance, R is equal to equivalent resistance of remaining resistance
$R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

Q. 18 (A)

$$
\begin{aligned}
& \rightarrow \text { R } \\
& i=A t B \\
& \text { at } t=\Delta T, i=0 \\
& \Rightarrow 0=A \Delta T+B \\
& \Rightarrow A \Delta T=-B
\end{aligned}
$$

$\mathrm{q}=\int_{0}^{\Delta \mathrm{T}} \mathrm{dq}=\int_{0}^{\Delta \mathrm{T}}(\Delta \mathrm{t}-\mathrm{A} \Delta \mathrm{T}) \mathrm{dt}$
$\Rightarrow \mathrm{q}=\frac{\mathrm{A} \Delta \mathrm{T}^{2}}{2}-\mathrm{B} \Delta \mathrm{T}^{2}$
$\Rightarrow \mathrm{q}=-\frac{\mathrm{A} \Delta \mathrm{T}^{2}}{2} \Rightarrow \mathrm{~A}=\frac{-2 \mathrm{q}}{\Delta \mathrm{T}^{2}}$
Heat $=\int_{0}^{\Delta T} i^{2} R . d t=\int_{0}^{\Delta T}\left(\frac{-2 q t}{\Delta T^{2}}+\frac{2 q}{\Delta T}\right)^{2} R d t$
$=\frac{4 q^{2}}{\Delta \mathrm{~T}^{2}} \int_{0}^{\Delta \mathrm{T}}\left(1-\frac{\mathrm{t}}{\Delta \mathrm{T}}\right)^{2} \cdot R \cdot d t$
$=\frac{4 q^{2}}{\Delta T^{2}}\left[\Delta T+\frac{(\Delta T)^{3}}{3(\Delta T)^{2}}-\frac{2(\Delta T)^{2}}{2 \Delta T}\right] R=\frac{4 q^{2} R}{3 \Delta T}$

Q. 19 (B)

$\mathrm{L} \longrightarrow \mathrm{R}$
$2 \mathrm{~L} \longrightarrow 2 \mathrm{R}$
$\Delta Q^{\prime}=2 \Delta \mathrm{Q}$
to raise $\Delta \mathrm{T}$ temperature in same time t .
$I^{\prime 2} \mathrm{R}^{\prime} \Delta \mathrm{t}=2 \mathrm{I}^{2} \mathrm{R} \Delta \mathrm{T}$
$\mathrm{I}^{\prime 2}(2 \mathrm{R}) \Delta \mathrm{T}=2 \mathrm{I}^{2} \mathrm{R} \Delta \mathrm{T}$
$\Rightarrow \mathrm{I}^{\prime}=\mathrm{I}$
$\frac{n \mathrm{E}}{2 \mathrm{R}}=\frac{3 \mathrm{E}}{\mathrm{R}} \Rightarrow \mathrm{n}=6$
Q. 20 (A)
$\left(\mathrm{I}_{0}-\frac{\mathrm{I}_{0}}{5}\right) 4=\frac{\mathrm{I}_{0}}{5} \mathrm{G}$
$\left(\mathrm{I}_{0}-\mathrm{I}_{\mathrm{g}}\right) \frac{2 \times 4}{2+4}=\mathrm{I}_{\mathrm{g}} \mathrm{G}$
from (1) and (2)
$\frac{16 \mathrm{I}_{0}}{5} \times \frac{6}{8\left(\mathrm{I}_{0}-\mathrm{I}_{\mathrm{g}}\right)}=\frac{\mathrm{I}_{0}}{5 \mathrm{I}_{\mathrm{g}}}$
$12 \mathrm{I}_{\mathrm{g}}=\mathrm{I}_{0}-\mathrm{I}_{\mathrm{g}} \Rightarrow \mathrm{I}_{\mathrm{g}}=\frac{\mathrm{I}_{0}}{13}$
Q. 21 (C)

$(4-\mathrm{I}) \mathrm{R}=\mathrm{IR}_{\mathrm{V}}=20$
$(4-I) R=20$
$4-I$ is less than 4
So that, R is greater than 5Ω
Q. 22 (C)

current
$\mathrm{I}=\frac{30}{300}=\frac{1}{10} \mathrm{amp}$
$\mathrm{I}_{1}=\frac{30}{400}=\frac{3}{40} \mathrm{amp}$.
$30=\left(I-I_{1}\right) R_{V} \Rightarrow R_{V}=\frac{30}{\frac{1}{10}-\frac{3}{40}}=1200 \Omega$

Case - II

$I=\frac{60}{400+\frac{300 \times 1200}{1200+300}}=\frac{3}{32} \mathrm{amp}$.
$\mathrm{I}_{0} 300=\left(\mathrm{I}-\mathrm{I}_{0}\right) 1200 \Rightarrow \mathrm{I}_{0}=\frac{1200}{1500} \mathrm{I}=\frac{4}{5} \times \frac{3}{32}=\frac{3}{40} \mathrm{amp}$
Reading of voltmeter $=\frac{3}{40} \times 300=\frac{900}{40}=22.5 \mathrm{~V}$
Q. 23 (B)

Current in primary circuit $I=\frac{\varepsilon}{9 r+r}=\frac{\varepsilon}{10 r}$
Potential drop across length $\mathrm{AB}=\mathrm{V}_{\mathrm{AB}}=\mathrm{I} \cdot \mathrm{R}$
$\mathrm{V}_{\mathrm{AB}}=\frac{\varepsilon}{10 \mathrm{r}} .9 \mathrm{r}=\frac{9 \varepsilon}{10}$
$\mathrm{x}=\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{L}}=\frac{9 \varepsilon}{10 \mathrm{~L}}$

For balance point $\frac{\varepsilon}{2}=\mathrm{x} \ell=\frac{9 \varepsilon}{10 \mathrm{~L}} \ell . \ell=\frac{5}{9} \mathrm{~L}$

Q. 24 (A)

For $I_{\text {max }}, R_{h}$ is minimum which is zero .
$I_{\max }=\frac{5.5}{20} \mathrm{Amp}$.
for $I_{\text {min }}, R_{h}$ is maximum which is 30Ω.
$I_{\min }=\frac{5.5}{20+30}=\frac{5.5}{50} \mathrm{Amp}$.
$\frac{\mathrm{I}_{\min }}{\mathrm{I}_{\max }}=\frac{5.5}{50} \times \frac{20}{5.5}=\frac{2}{5} \mathrm{Amp}$.

Q. 25 (B)

S_{2} is open

According to diagram
$\frac{\varepsilon}{2}=6 \mathrm{~V} \quad \varepsilon=12 \mathrm{~V}$
$\mathrm{L} \rightarrow 12 \mathrm{~V}$
$\frac{7 \mathrm{~L}}{12} \rightarrow 7$ volt

$6-\mathrm{ir}=5$
$6-\frac{6}{10+r} r=5$
$\Rightarrow 6 \mathrm{r}=10+\mathrm{r} \Rightarrow \mathrm{r}=2 \Omega$
Q. 26 (D)
$\mathrm{r}=\mathrm{i}_{\mathrm{g}}\left(\mathrm{R}+\mathrm{r}_{\mathrm{g}}\right)$
Q. 27
(C)

$R=\frac{V}{i}$
$\mathrm{i}_{1}<4 \mathrm{~A}$
$20=\mathrm{i}_{1} \mathrm{R}$
$\mathrm{R}=\frac{20}{\mathrm{i}_{1}}>5 \Omega$
Q. 28 (A)

(A) Zero deflection does not depend on r
(B) If $\mathrm{R}>\mathrm{R}_{0}$ then drop across potentiometer is negligible
\therefore We will not get zero deflection
(C) Notes
(D) Notes

JEE-ADVANCED
 MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A,D)

In series current remain same $I=$ neAv $_{d}, J=I / A$, for constant current $\mathrm{v}_{\mathrm{d}} \propto \frac{1}{\mathrm{~A}}$ and $\mathrm{J} \propto \frac{1}{\mathrm{~A}}$.
Q. 2
(A,D)
$\mathrm{IR}=\mathrm{V}=\mathrm{E} \ell \Rightarrow \mathrm{I} \frac{\mathrm{\rho} \ell}{\mathrm{~A}}=\mathrm{E} \ell \Rightarrow \rho=\frac{\mathrm{EA}}{\mathrm{I}}=\frac{\mathrm{E}}{\mathrm{J}}=\frac{5 \times 10^{-2}}{10}$
$=5 \times 10^{-3} \Omega-\mathrm{m}$
$\sigma=\frac{1}{\rho}=\frac{1}{5 \times 10^{-3}}=200 \mathrm{mho} / \mathrm{m}$.
Q. 3 (A,B,C)

Q. 4 (A,B,D)
for short circuited, $I=\frac{E}{r}$
$\mathrm{V}=\mathrm{E}-\mathrm{Ir}=\mathrm{E}-\frac{\mathrm{E}}{\mathrm{r}} \cdot \mathrm{r}=0$
when current flow from negative terminal to positive terminal
$\mathrm{V}=\mathrm{E}-\mathrm{Ir} \quad$ which is less than E
when current flow from positive terminal to negative terminal
$\mathrm{V}=\mathrm{E}+\mathrm{Ir} \quad$ which is greater than E .
Q. 5 (A,C,D)

In parallel resistance $\downarrow \therefore \mathrm{i} \uparrow$

Let potention of point B is x then from kirchhoff's first law

$$
\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0
$$

$$
\begin{aligned}
& \frac{x}{2}+\frac{x-2}{4}+\frac{x+1}{3}=0 \\
& \frac{6 x+3 x-6+4 x+4}{12}=0
\end{aligned}
$$

$$
\Rightarrow 13 \mathrm{x}=2
$$

$$
\mathrm{x}=\frac{2}{13} \text { volt }
$$

Q. 6

$$
E_{\text {eq }}=\frac{\frac{\mathrm{KE}}{\mathrm{r}}+\frac{\mathrm{KE}}{\mathrm{r}}+\frac{\mathrm{KE}}{\mathrm{r}}+\ldots \ldots \ldots . . . \text { upto } \frac{\mathrm{N}}{\mathrm{~K}}}{\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{r}}+\ldots \ldots . \text { upto } \frac{\mathrm{N}}{\mathrm{~K}}}
$$

$\mathrm{E}_{\mathrm{eq}}=\mathrm{KE}$
$\frac{1}{\mathrm{r}_{\mathrm{eq}}}=\frac{1}{\mathrm{Kr}}+\frac{1}{\mathrm{Kr}} \ldots \ldots \ldots$. upto $\frac{\mathrm{N}}{\mathrm{K}} \mathrm{r}_{\mathrm{eq}}=\frac{\mathrm{K}^{2} \mathrm{r}}{\mathrm{N}}$
For maximum power $\mathrm{r}_{\mathrm{eq}}=\mathrm{R} \Rightarrow \frac{\mathrm{K}^{2} \mathrm{r}}{\mathrm{N}}=\mathrm{R} \Rightarrow \mathrm{K}=\sqrt{\frac{\mathrm{NR}}{\mathrm{r}}}$
$P_{\max }=\left(\frac{\mathrm{KE}}{\mathrm{R}+\frac{\mathrm{K}^{2} \mathrm{r}}{\mathrm{N}}}\right)^{2} \mathrm{R} \quad\left(\because \mathrm{R}=\frac{\mathrm{K}^{2} \mathrm{r}}{\mathrm{N}}\right)$
$P_{\max }=\left(\frac{K E . N}{2 K^{2} r}\right)^{2} \cdot \frac{K^{2} r}{N} \Rightarrow P_{\max }=\frac{N E^{2}}{4 r}$
Q. 7
(A,C)
(i) $\mathrm{R}_{\text {bulb }}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{10}{10 \times 10^{-3}}=1 . \mathrm{k} \Omega$
(ii) $\mathrm{R}_{\text {bulb }}=\frac{220}{50 \times 10^{-3}}=4.4 \mathrm{k} \Omega$.
since increase in temperature increases resistance when it is connected to 220 V mains.
Q. 8 (A,B,D)

It is easier to start a car engine on a warm day than on a chilly cold day because the internal resistance of battery decreases with rise in temperature and so current increases.
Power Loss $=I^{2} R, \Rightarrow$ Power loss $\propto I^{2}$
Also $\mathrm{P}=\mathrm{V} . \mathrm{I} \Rightarrow \mathrm{I}=\frac{\mathrm{P}}{\mathrm{V}}$
Since for given power \& line $P \& R$ are constant
Power loss $=I^{2} R=\frac{\mathrm{P}^{2} \mathrm{R}}{\mathrm{V}^{2}}$
\therefore Power loss $\propto \frac{1}{\mathrm{~V}^{2}}$
mica is good conductor of heat but bad conductor of electricity
Q. 9 (A,C)

current flow in circuit is I = 10 amp
power supplied by the battery is $=I^{2} R=(10)^{2} \times 2=200$ W
Potential drop across $4 \Omega \& 6 \Omega$ are equal and it is equal to zero.
current in AB wire is 10 amp .

Q. 10 (A,B,C,D)

$\mathrm{i}=\mathrm{neAV}_{\mathrm{d}}, \mathrm{R}=\frac{\mathrm{\rho l}}{\mathrm{~A}}$
$E_{1}=\frac{V}{d x} \Rightarrow=\frac{i . R}{d x}=\frac{i . \rho \cdot d x}{A . d x}$
$\frac{\text { i. } \rho}{A}=$ constant $\Rightarrow E_{1} \propto \frac{1}{A_{1}}$
$\frac{E_{1}}{E_{2}}=\frac{A_{2}}{A_{1}}$
$P=i^{2} R \Rightarrow i^{2} \frac{\rho d x}{A}$

Q. 11 (A,C,D)

current $\mathrm{i}=\frac{\varepsilon}{\mathrm{R}+\mathrm{r}}$
cell generating power $=\varepsilon$ i
Heat produced in R at the rate
$=i^{2} R=i R \cdot \frac{\varepsilon}{R+r}=\varepsilon i \cdot \frac{R}{R+r}$
Heat produced in r at the rate $=i^{2} r=\varepsilon i \frac{r}{R+r}$.
Q. 12 (A,C)

Current should be maximum in 2Ω

$\Rightarrow \mathrm{R}=0$ (power should be maximum when $\mathrm{r}=0$) Power $=72$ watt.
Q. 13 (A, B, C)

range of potentiometer 0 to 7.5 V

Q. 14 (A,C,D)

For non ideal ammeter and voltmeter, ammeter have low resistance and voltmeter have high resistance. Therefore the main current in the circuit will be very low and almost all current will flow through the ammeter. It emf of cell is very high then current in ammeter is very high result of this current the devices may get damaged. If devices are ideal that means resistance of voltmeter is infinity. so that current in the circuit is zero. Therefore ammeter will read zero reading and voltmeter will read the emf of cell.
Q. 15 (B,C)
for $50 \mathrm{~V}, \mathrm{R}_{\mathrm{V}}=\frac{50}{50 \times 10^{-6}}=1000 \mathrm{~K} \Omega$ in series
for $10 \mathrm{~V}, \mathrm{R}_{\mathrm{V}}=\frac{10}{50 \times 10^{-6}}=200 \mathrm{~K} \Omega$ in series
for $5 \mathrm{~mA}, \mathrm{R}_{\mathrm{s}}=\frac{100 \times 50 \times 10^{-6}}{5 \times 10^{-3}}=1 \Omega$ in parallel
for $10 \mathrm{~mA}, \mathrm{R}_{\mathrm{s}}=\frac{100 \times 50 \times 10^{-6}}{10 \times 10^{-3}}=\frac{1}{2} \Omega$ in parallel
Q. 16 (A,C)

$$
\left.\begin{array}{l}
\mathrm{R}_{1}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{10 \mathrm{~V}}{10 \mathrm{~mA}}=1 \mathrm{k} \Omega \\
\mathrm{R}_{2}=\frac{220 \mathrm{~V}}{50 \mathrm{~mA}}=4.4 \mathrm{k} \Omega
\end{array}\right\} \Rightarrow(\mathrm{A}) \text { and (C) }
$$

Q. 17 (A,D)

To ensure maximum current through ammeter its resistance should be small.
To ensure minimum current through voltmeter its resistance must be very large.
Q. 18 (A,B)

As emf of E_{1} is distributed over the wire $A B$. Hence A is correct E_{2} is balanced by fraction of length of wire $E_{1}>$ E_{2}.
We only balance potential difference hence B is correct.
Q. 19 (A,C)

In parallel each will take 10 A and hence combination requries $10+10=20 \mathrm{~A}$
In series current will be same in each fuse and that will be equal to required circuit current hence combination requires the same current 10 A
Q. 20 (B)
Q. 21 (A)

$\mathrm{r}=\left(\frac{1 \Omega}{\mathrm{~m}}\right) \quad(10 \mathrm{~cm}) \mathrm{r}=0.1 \Omega$
$\mathrm{V}_{\text {bird }}=\left(\mathrm{R}_{\text {II combination }}\right)$ current
$\mathrm{V}_{\text {bird }}=\left(\frac{10 \times 0.1}{10+0.1}\right)(1) \cong 0.1 \mathrm{~V}$
Q. 22 (C)

Here $\mathrm{i} \times 10=(\mathrm{I}-\mathrm{i})(0.1) \Rightarrow 100 \mathrm{i}=\mathrm{I}-\mathrm{i} \Rightarrow 101 \mathrm{i}=\mathrm{I}$
If $\mathrm{I}=1 \mathrm{~A}$
$\mathrm{i}=\frac{1}{101} \mathrm{~A} \cong 0.01 \mathrm{~A}$
Q. 23 (C)

$\mathrm{V}_{\mathrm{AD}}=11 \mathrm{KV}, \quad \mathrm{V}_{\mathrm{BC}}=$?
$\mathrm{V}_{\mathrm{AD}}=\mathrm{V}_{\mathrm{AB}}+\mathrm{V}_{\mathrm{BC}}+\mathrm{V}_{\mathrm{CD}}$
$\mathrm{V}_{\mathrm{AB}}=\mathrm{IR}=(1 \mathrm{~A})(1 \mathrm{~km} \times 1 \Omega / \mathrm{m})=1000 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CD}}=\mathrm{V}_{\mathrm{AB}}=1000 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BC}}=\mathrm{V}_{\mathrm{AD}}-\mathrm{V}_{\mathrm{AB}}-\mathrm{V}_{\mathrm{CD}}=11000-1000-1000$.
$\mathrm{V}_{\mathrm{BC}}=9000 \mathrm{Volt}$

Q. 24 (A)

If critical current through bird is 0.1 A then main current $\mathrm{I}=101 \mathrm{i}$ (As Q.No.5)
$\mathrm{I}=101 \times 0.1=10.1 \mathrm{~A}$
$P_{\text {max }}=(11 \mathrm{KV})(10.1 \mathrm{~A})=111 \mathrm{KW}$
Q. 25 (B)
Q. 26 (B)
Q. 27 (D)
(25-27)
As E_{2} is increasing it's current also increases, So, increasing graph is of i_{2}.

$$
\mathrm{i}_{1}=0.1 \mathrm{~A}, \mathrm{E}_{2}=4 \mathrm{~V}, \mathrm{i}_{2}=0
$$

As ;

$$
\begin{aligned}
& 0.1 R_{1}+0.1 R_{2}-E_{1}=0 \\
& 0.1 R_{2}-4 \mathrm{~V}=0 \\
& R_{2}=40 \Omega
\end{aligned}
$$

Now; $i_{2}=0.3 \mathrm{~A}, \mathrm{i}_{1}=-0.1 \mathrm{~A}, \mathrm{E}_{2}=8 \mathrm{~V}$
Now ; $0.1 \mathrm{R}_{1}+\mathrm{E}_{1}-8=0$
When $E_{2}=6 \mathrm{~V}$, current in E_{1} is $i_{1}=0$ (from graph)

$$
E_{1}=6 \mathrm{~V}
$$

$$
\Rightarrow R_{1}=\frac{4}{0.2}=20 \Omega
$$

Q. 28 (B)

We can consider the network to consist of two resistances connected in parallel between X and Y . One of these is the resistance R between X and Y and the other is the equivalent resistance of the rest of circuit. This is shown in Fig (A).

(A)
(Here, $\mathrm{R}^{\prime}{ }_{\mathrm{eq}}$ is the equivalent resistance of rest of the circuit, i.e., excluding R)

(Here, R_{eq} is the equivalent of $\mathrm{R}^{\prime}{ }_{\mathrm{eq}}$ and R so R_{eq} is the equivalent resistance of total circuit)
Referring to Fig (A),
$V=\frac{I}{2} R$
(also $\mathrm{V}=\mathrm{I} / 2 \mathrm{R}^{\prime}{ }_{\text {eq }}$)
and form fig $(\mathrm{B}), \mathrm{V}=\mathrm{I} \mathrm{R}_{\mathrm{eq}}$
So $\mathrm{IR}_{\mathrm{eq}}=\frac{\mathrm{I}}{2} \mathrm{R}$
or $R_{\text {eq }}=\frac{R}{2}$
Hence the equivalent resistance of the network between X and Y or any two neighbouring points is R/2.
In Fig. (B)

$$
\mathrm{V}=\mathrm{IR}_{\mathrm{eq}}
$$

or $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{eq}}}$
but $\mathrm{R}_{\mathrm{eq}}=\mathrm{R} / 2$
$\therefore \mathrm{I}=\frac{2 \mathrm{~V}}{\mathrm{R}}$
Given $\mathrm{V}=1 \mathrm{~V}, \quad \mathrm{R}=4 \Omega$
$\therefore \mathrm{I}=\frac{2}{4}=0.5 \mathrm{~A}$
So the correct answer is (B).
Q. 29 (A)

In Fig (A), since सthe current I is equally shared by R and $R^{\prime}{ }_{\text {eq }}$, so $R^{\prime}{ }_{\text {eq }}=R$. Now if the resistance R is removed, it will be only $\mathrm{R}^{\prime}{ }_{\text {eq }}=\mathrm{R}$ placed across the battery so that current will now be

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{1}{4}=0.25 \mathrm{~A}
$$

(In this case equivalent resistance of circuit will be $\mathrm{R}^{\prime}{ }_{\mathrm{eq}}=\mathrm{R}$) Hence the correct option is (A).
Q. 30 (C)

Let us draw the corresponding figures for capacitances.

(C)

$\left(\mathrm{C}^{\prime}{ }_{\text {eq }}\right.$ is the equivalent capacitance of rest of the circuit, i.e., excluding C)

(C_{eq} is the equivalent capacitance of total circuit between X and Y)
In Fig (D)

Potential difference across C,

$$
\mathrm{V}=\frac{\mathrm{Q} / 2}{\mathrm{C}}=\frac{\mathrm{Q}}{2 \mathrm{C}}
$$

$\operatorname{in} \operatorname{Fig}(E) V=\frac{Q}{C_{e q}}$
$\therefore \frac{\mathrm{Q}}{\mathrm{C}_{\mathrm{eq}}}=\frac{\mathrm{Q}}{2 \mathrm{C}}$
or $\mathrm{C}_{\mathrm{eq}}=2 \mathrm{C}$
so the correct option is (C)
Q. 31 (A) q, (B) p, (C) p, (D) q

Drift speed $V_{d}=\frac{J}{n e}=\frac{i}{n e A}$
$i=\frac{V}{R}$ where $R=\frac{\rho L}{A}$
$\mathrm{E}=\frac{\mathrm{V}}{\mathrm{L}}$ and $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
Q. 32 (A) p; (B) q, s; (C) s; (D) p, r, s

short circuited resistor.
In a resistor current always flows from higher potential to lower potential.
In short circuited resistor or ideal cell, energy dissipated is always zero because in short circuited resistor no current flow and in ideal cell no internal resistance. Potential difference may be zero across a resistor, nonideal cell or short circuited resistor.

NUMERICAL VALUE BASED

Q. 1 [1]

$\Rightarrow \frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{4}+\frac{1}{2}+\frac{1}{4} \Rightarrow \mathrm{R}_{\mathrm{eq}}=1 \Omega$

Q. $2 \quad$ [4]

Sol. In combination of $2,6,5 \Omega$ heat produce will be maximum in 2Ω, while in combination of 5 w and 4 W heart produce
will be maximum in $4 \Omega\left(H=\frac{\mathrm{V}^{2}}{\mathrm{R}}\right)$
$I_{2 \Omega}: I_{6 \Omega}: I_{5 \Omega}=\frac{1}{2}: \frac{1}{6}: \frac{1}{5}$
$\mathrm{I}_{2 \Omega}: \mathrm{I}_{6 \Omega}: \mathrm{I}_{5 \Omega}=15: 5: 6$

$$
\begin{aligned}
& \mathrm{I}_{4 \Omega}: \mathrm{I}_{5 \Omega}=5: 4 \\
& \mathrm{I}_{2 \Omega}=\frac{5}{26} \mathrm{I} \\
& \mathrm{H}_{2 \Omega}=\left(\frac{5}{26} \mathrm{I}\right)^{2} \times 2 \mathrm{~J}, \mathrm{H}_{4 \Omega}=\left(\frac{4}{9} \mathrm{I}\right)^{2} \times 4 \mathrm{~J} \\
& \mathrm{H}_{4 \Omega}>\mathrm{H}_{2 \Omega}
\end{aligned}
$$

Q. 3 [3]

$$
P=I^{2} y=\left(\frac{10}{2+y+R}\right)^{2} ; \quad y=\frac{100}{(2+y+R)^{2}} y
$$

For P to be maximum
$\frac{\mathrm{dP}}{\mathrm{dy}}=0 \Rightarrow \frac{\mathrm{~d}}{\mathrm{dy}} \frac{100 \mathrm{y}}{(2+\mathrm{y}+\mathrm{R})^{2}}=0$
$R=y-z$ put $y=5 \Rightarrow R=3 \Omega$

Q. 4 [4]

The circuit can be shown as in the figure. The bulb is marked $100 \mathrm{~W}, 220 \mathrm{~V}$.
Hence the resistance of filament of bulb.
$\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}=\frac{220 \times 220}{100}=484 \Omega$
Current in the given circuit
$\mathrm{I}=\frac{220}{484+8+8}=0.44 \mathrm{~A}$
Power delivered to the bulb

$$
\begin{gathered}
\mathrm{I}^{2} \mathrm{R}_{\text {bulb }}=(0.44)^{2}(484) \\
=93.7 \Omega
\end{gathered}
$$

Q. 5 [600]
$I=\frac{1.5}{450}$

When both switch are closed
$I_{100 \Omega}=\frac{1.5}{\frac{100 R}{100+R}+300} \times \frac{R}{100+R}$

From (i) and (ii)
$R=600 \Omega$
Q. 6 [999]

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{V}}{\mathrm{i}_{\mathrm{g}}}-\mathrm{G} \\
& =\frac{5}{0.005}-1=999 \Omega
\end{aligned}
$$

Q. 7 [4]

Potentiometer will give terminal potential

$$
\mathrm{V}=\mathrm{E}-\mathrm{Ir} \Rightarrow \mathrm{~V}=5-\frac{5}{(\mathrm{R}+1)} \times 1=\mathrm{x} \times 40
$$

$$
5-\frac{5}{(\mathrm{R}+1)}=\frac{10}{100} \times 40 \Rightarrow \mathrm{R}=4 \Omega
$$

Q. 8 [20 ohm]

$$
\mathrm{I}_{\mathrm{V}}=\frac{96}{480}
$$

$\mathrm{I}_{\mathrm{V}}=0.2 \mathrm{Amp}$
$R=\frac{96}{(5-0.2)}$
$\mathrm{R}=20 \Omega$
Q. 9 [1]

For $\mathrm{w}_{1}, \varepsilon=\frac{l}{2}\left[\left(\frac{\varepsilon_{\mathrm{p}}}{1+2}\right) \frac{2}{l}\right]$
For $\mathrm{w}_{2}, \varepsilon=\frac{2 l}{3}\left[\left(\frac{\varepsilon_{\mathrm{p}}}{1+\mathrm{R}}\right) \frac{\mathrm{R}}{l}\right]$.
Dividing eq. (i) by (ii) and on solving, we get

Resistance of wire $\mathrm{w}_{2}=1 \Omega$

Q. 10 [0002]

Taking potential at A to be zero potental at $\mathrm{B}=3 \mathrm{~V}$ and potential at $\mathrm{B}^{\prime}=3 \mathrm{~V}$ and potential at $\mathrm{C}=6 \mathrm{~V}$ so reading of $\mathrm{V}_{3}=3 \mathrm{~V}$

Let V_{D} be potential of point D then sum of charged reaching point D is zero

$$
\begin{aligned}
& \quad \frac{V_{B}-V_{D}}{R_{V_{2}}}+\frac{V_{B^{\prime}}-V_{D}}{R_{V_{1}}}+\frac{\left(V_{C}-V_{D}\right)}{R_{V_{3}}}=0 \\
& {\left[R_{V_{1}}=R_{V_{1}}=R_{V_{3}}=R\right]} \\
& \Rightarrow \quad \frac{3-V_{D}}{R}+\frac{3-V_{D}}{R}+\frac{6-V_{D}}{R}=0 \\
& \Rightarrow \quad l \\
& \quad \begin{array}{l}
12-3 V_{D}=0 \\
V_{\mathrm{D}}=4 \text { volts } \\
\text { reading of } V_{3}=2 \text { volts. }
\end{array}
\end{aligned}
$$

KVPY

PREVIOUS YEAR’S

Q. 1 ()

For $\mathrm{P}: \mathrm{I}=\mathrm{I}_{\mathrm{R}}+\mathrm{I}_{\mathrm{V}}=\mathrm{V} / \mathrm{R}+\mathrm{V} / \mathrm{R}_{\mathrm{V}}$
$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}\left[\frac{\mathrm{R}_{\mathrm{V}}}{\mathrm{R}_{\mathrm{V}}-\mathrm{V} / \mathrm{I}}\right]$
$=\mathrm{R}_{\mathrm{est}}\left[\frac{\mathrm{R} v}{1-\mathrm{R}_{\mathrm{est}} / \mathrm{R}_{\mathrm{v}}}\right]$
$\approx R_{\text {est }}\left[1+R_{\text {est }} / R_{v}\right]$ (neglecting higher order terms in $R_{\text {est }}$
$/ \mathrm{R}_{\mathrm{v}}$)
$\delta \mathrm{R}_{\mathrm{p}}=\left|\mathrm{R}_{\text {est }}-\mathrm{R}\right|=\mathrm{R}_{\text {est }}^{2} / \mathrm{R}_{\mathrm{V}} \approx \frac{\mathrm{R}^{2}}{\mathrm{R}_{\mathrm{V}}}$
Alternatively,
$\mathrm{R}_{\text {est }}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{\mathrm{R}_{\mathrm{V}} \mathrm{R}}{\mathrm{R}_{\mathrm{V}}+\mathrm{R}}$
$\delta \mathrm{R}_{\mathrm{P}}=\left|\mathrm{R}_{\mathrm{est}}-\mathrm{R}\right|\left[\frac{\mathrm{R}_{\mathrm{V}}}{\mathrm{R}_{\mathrm{V}}+\mathrm{R}}-1\right] \gg \frac{\mathrm{R}^{2}}{\mathrm{R}_{\mathrm{V}}}$
For $\mathrm{Q}: \mathrm{V}=\mathrm{I}\left(\mathrm{R}+\mathrm{R}_{\mathrm{A}}\right)$
$\mathrm{R}=\mathrm{V} / \mathrm{I}-\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\text {est }}-\mathrm{R}_{\mathrm{A}}$
$\delta R_{Q}=\left|R_{\text {est }}-R\right|=R_{A}$
If $R=\sqrt{R_{A} R_{V}}$, then $\delta R_{P} / \delta R_{Q}=$

$$
\mathrm{R}_{\text {est }}^{2} /\left(\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{V}}\right)=\mathrm{R}_{\text {est }}^{2} / \mathrm{R}^{2} \approx 1
$$

Q. 2 (A)

Part of coil turned then resistance decreases
\therefore Power consumption will be more than 1 kW

Q. 3 (C)

For null deflection

$$
\frac{P}{Q}=\frac{S}{R} \text { or } \frac{P}{S}=\frac{Q}{R}
$$

$\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{S}}{\mathrm{R}}$ still valid
\therefore deflection is zero.
Q. 4 (A)

$10=4 \mathrm{i}$
$\mathrm{i}=\frac{5}{2}$
$P_{i}=i^{2} R=\left(\frac{5}{2}\right)^{2} \times 1=\frac{25}{4}$
$P_{f}=\left(\frac{10}{12}\right)^{2} \times 9=\frac{100}{12 \times 12} \times 9$
$P_{f}=P_{i}$
Q. 5 (D)

Q. 6 (C)

Applying volume conservation $\mathrm{A} \times \mathrm{L}=\mathrm{A}^{\prime} \times 2 \mathrm{~L}$
$A^{\prime}=\frac{A}{2}$
$R=\frac{\rho L}{A}$
$R^{\prime}=\frac{\rho \times 2 L}{A^{\prime}}=\frac{\rho \times 4 L}{A}$
$R^{\prime}=4 \mathrm{R}$
Q. 7 (D)

$$
\mathrm{V}_{\mathrm{eq}}=\frac{\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}} \Rightarrow \frac{\mathrm{~V}_{1} \mathrm{R}_{2}+\mathrm{V}_{2} \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} ; \mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

$$
I=\frac{V_{e q}}{R+R_{e q}}
$$

In each case $R_{\text {eq }} \& R$ is same only $V_{1} \& V_{2}$ is changing $\therefore \mathrm{V}_{\mathrm{eq}}$ is changing
$\mathrm{V}_{\mathrm{eq}}=\frac{2 \times \mathrm{R}_{2}+0 \times \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad\left[\mathrm{~V}_{1}=2, \mathrm{~V}_{2}=0\right]$
$\mathrm{V}_{\mathrm{eq}}=\frac{2 \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$

Case - 2

$\mathrm{V}_{\mathrm{eq}}=\frac{4 \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
$\left[\mathrm{V}_{1}=0, \mathrm{~V}_{2}=4\right]$
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{3}{4}=\frac{2 \mathrm{R}_{2}}{4 \mathrm{R}_{1}} \quad \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{3}{2}$

Case - 3

$\mathrm{V}_{\mathrm{eq}}=\frac{10 \mathrm{R}_{1}+10 \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
$\frac{3}{\mathrm{I}^{\prime}}=\frac{2 \mathrm{R}_{2}}{10\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)} \Rightarrow \frac{3}{\mathrm{I}^{\prime}}=\frac{2 \times 1.5 \mathrm{R}_{1}}{10\left(2.5 \mathrm{R}_{1}\right)}$ or $\mathrm{I}^{\prime}=25 \mathrm{~mA}$
Q. 8
Q. 9 (A)

Power dissipate in R_{1} is maximum as its current is maximum and its
resistance is also 40Ω which is higher than $R_{5} R_{4}$.
Q. 10 (A)
$\mathrm{i}_{1}=\frac{\mathrm{nE}}{\mathrm{nR}_{0}+\mathrm{R}}, \mathrm{i}_{2}=\frac{\mathrm{E}}{\left(\mathrm{R}_{0}+\mathrm{nR}\right)}$
$\mathrm{P}_{1}=\frac{\mathrm{nE}^{2} \mathrm{R}}{\left(\mathrm{nR}_{0}+\mathrm{R}\right)^{2}}, \mathrm{P}_{2}=\frac{\mathrm{nE}^{2} \mathrm{R}}{\left(\mathrm{R}_{0}+\mathrm{nR}\right)^{2}}$
$\because \mathrm{P}_{1}=\mathrm{P}_{2}$
Hence $\mathrm{R}_{0} / \mathrm{R}=1$
Q. 11 (D)

Let $\mathrm{R}=$ resistance of each bulb.

Q. 12 (A)

The given circuit can be simplified into two wheatstone bridge in parallel
Q. 13 (A)

Concept of fuse wire
Q. 14 (A)

$$
\frac{\mathrm{I}}{\mathrm{I}^{\prime}}=8
$$

Q. 15 (C)

$0.1 \times\left(25+\frac{20 \times 60}{20+60}\right)=\mathrm{i}_{2} \times 20$
$\mathrm{I}_{2}=0.2 \mathrm{~A}$
Hence, i through 80Ω
$0.1+0.2=0.3 \mathrm{~A}$
Q. 16 (D)

In stready state i through capacitor is zero.
Hence V across $2 \mathrm{~K} \Omega=\mathrm{V}$ across capacitor
Vacross $2 \mathrm{k} \Omega=\frac{2}{2+1} \times 6=4 \mathrm{~V}$
Q. 17 (D)
$R=1 \mathrm{k} \Omega, \mathrm{i}=1 \mathrm{~mA}=1 \mathrm{M} \times 10^{-3} \mathrm{~A}$

$i=\frac{i_{1} \times R}{3 R}=\frac{i_{1}}{3}$
$\therefore \quad \mathrm{i}_{1}=3 \mathrm{i}$

$\mathrm{i}_{1}=\mathrm{i}_{2} \times \frac{3}{8} \Rightarrow \quad \frac{3}{8} \times 3 \mathrm{i}=8 \mathrm{i}$

$\mathrm{i}_{2}=\mathrm{i}_{3} \times \frac{8}{21}$

$\mathrm{i}_{3}=\frac{21}{8} \mathrm{i}_{2}=\frac{21}{8} \times 8 \mathrm{i}=21 \mathrm{i}$
$\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{Q}}=\mathrm{i}_{3} \times\left[\mathrm{R}+\frac{13 \mathrm{R}}{21}\right]$
$\Rightarrow \quad 21 \mathrm{i} \times \frac{34 \mathrm{R}}{21}$

$$
\begin{aligned}
& \Rightarrow \quad 34 \mathrm{iR} \\
& \Rightarrow \quad 34 \times 1 \times 10^{-3} \times 1 \times 10^{3}=34 \text { volt }
\end{aligned}
$$

Q. 18 (A)

Let assume $\mathrm{R}_{\mathrm{eq}}=\mathrm{PQ}=\mathrm{x}$

$R_{\text {eqPQ }}=r+\frac{r x}{r+x}$
$x=\frac{r^{2}+r x+r x}{r+x}$
$r x+x^{2}=r^{2}+2 r x$
$\mathrm{x}^{2}-\mathrm{rx}-\mathrm{r}^{2}=0$
$\mathrm{x}=\frac{+\mathrm{r} \pm \sqrt{\mathrm{r}^{2}+4 \mathrm{r}^{2}}}{2} \Rightarrow \frac{\mathrm{r}(1+\sqrt{5})}{2}$
Power in bulb $=1$ watt
$i^{2} \mathrm{R}=1$
$\mathrm{i}^{2} \times 16=1$
$\mathrm{i}=\frac{1}{4} \mathrm{amp}$.
$\mathrm{i}=\frac{10}{\mathrm{R}+\mathrm{R}_{\mathrm{PQ}}}$
$\frac{1}{4}=\frac{10}{16+\frac{\mathrm{r}}{2}(1+\sqrt{5})}$
$16+\frac{\mathrm{r}}{2}(1+\sqrt{5})=40$
$\mathrm{r}=14.8 \Omega$
Q. 19 (4)

current through wire $1=0$
Q. 20 (D)
$1=$ neAv
$\mathrm{ne}=\frac{1}{\mathrm{Av}} \frac{500 \times 10^{-6}}{15 \times 10-7 \times 3 \times 10^{7}}=\frac{100}{9} \times 10^{-6} \mathrm{c} / \mathrm{m}^{3} \sim 10^{-}$
${ }^{5} \mathrm{c} / \mathrm{m}^{3}$
Q. 21 (B)
$\mathrm{I}=\mathrm{neAv}_{\mathrm{d}}$
$\mathrm{J}=\frac{\mathrm{I}}{\mathrm{A}}=\sigma \mathrm{E}$
Q. 22 (B)
case -a

$\mathrm{Rv}=$ Resistance of voltmeter
$\mathrm{RA}_{\mathrm{A}}=$ Resistance of ammeter
$\frac{V}{A}=\frac{\mathrm{IR}_{V}}{\left(\frac{\mathrm{I}}{1+\mathrm{R}_{\mathrm{A}}}\right)}=\mathrm{R}_{\mathrm{V}}\left(1+\mathrm{R}_{\mathrm{A}}\right)=1000$
Case - b

$$
\begin{aligned}
& \frac{V}{A}=\frac{\left(\frac{\mathrm{I}}{1+\mathrm{R}_{\mathrm{V}}}\right) \mathrm{R}_{\mathrm{V}}}{\mathrm{I}}=\frac{\mathrm{R}_{\mathrm{V}}}{\mathrm{R}_{\mathrm{V}}+1}=0.999 \\
& \Rightarrow \quad \mathrm{R}_{\mathrm{V}}=0.999\left(1+\mathrm{R}_{\mathrm{V}}\right) \\
& \Rightarrow \quad \mathrm{R}_{\mathrm{V}}=999 \Omega
\end{aligned}
$$

From(i)

$$
\mathrm{R}_{\mathrm{A}}=10^{-3} \Omega
$$

Q. 23 (C)

Total power used by laptops is $=90 \times 10=900 \mathrm{~W}$.
Power delivered by UPS $=1 \mathrm{kVA}=1000 \mathrm{~W}$
Statement I is correct

Now $\quad \mathrm{P}=\mathrm{VI}$
$900=220 \mathrm{~L}$

$$
\mathrm{I}=\frac{900}{220}=4.1 \mathrm{~A}
$$

So 3A fuse can not used (II is incorrect)
Cost of consumed electricity is

$$
\frac{900 \times 5}{1000} \times 5=\text { Rs. } 22.5
$$

Q. 24 (C)

Rate of heat gained by water
$\mathrm{ms}\left[\frac{\mathrm{dT}}{\mathrm{dt}}\right]=\mathrm{i}^{2} \mathrm{R}_{1}-4 \sigma e \mathrm{AT}_{0}^{3}\left[\mathrm{~T}-\mathrm{T}_{0}\right]$
$\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{i}^{2} \mathrm{R}_{1}}{\mathrm{~ms}}-\frac{4 \sigma e \mathrm{AT}_{0}^{3}}{\mathrm{~ms}}\left(\mathrm{~T}-\mathrm{T}_{0}\right)$
$\frac{\mathrm{dT}}{\mathrm{dt}}=\mathrm{C}_{1}-\mathrm{C}_{2} \mathrm{~T}$ (here C_{1} and C_{2} are positive constant)
$\int_{T_{\mathrm{i}}}^{\mathrm{T}} \frac{\mathrm{dT}}{\mathrm{c}_{1}-\mathrm{c}_{2}}=\int \mathrm{dt}$
$\frac{1}{-\mathrm{C}_{2}} \ln \frac{\mathrm{C}_{1}-\mathrm{C}_{2} \mathrm{~T}}{\mathrm{C}_{1}-\mathrm{C}_{2} \mathrm{~T}_{\mathrm{i}}}=\mathrm{t}$
$\mathrm{C}_{1}-\mathrm{C}_{2} \mathrm{~T}=\left(\mathrm{C}_{1}-\mathrm{C}_{2} \mathrm{~T}_{\mathrm{i}}\right) \mathrm{e}^{-\mathrm{c}_{2} \mathrm{t}}$
$\mathrm{C}_{2} \mathrm{~T}=\mathrm{C}_{1}-\left(\mathrm{C}_{1}-\mathrm{C}_{2} \mathrm{~T}_{\mathrm{i}}\right) \mathrm{e}^{-\mathrm{c}_{2} \mathrm{t}}$

Q. 25 (A)

As $\mathrm{I}=$ constant
\& $\quad V=i R \& \quad V$ in general $\quad V=i\left(R_{0}+\Delta R\right)$
$R=\frac{\rho \ell}{A}$
$\frac{\Delta \mathrm{R}}{\mathrm{R}}=\rho\left(\frac{\Delta \ell}{\ell}-\frac{\Delta \mathrm{A}}{\mathrm{A}}\right)$
$\frac{\Delta \mathrm{A}}{\mathrm{A}}=-\frac{\Delta \ell}{\ell} \quad \& \quad \rho=$ constant as there is no joule heating

So $\Delta R=R\left(\frac{\rho 2 \Delta \ell}{\ell}\right)=\operatorname{R\rho }(2 \varepsilon)$
$\Rightarrow \mathrm{V}=\mathrm{i}(\mathrm{R}+2 \rho \mathrm{R} \varepsilon)$
so graph will look like

Q. 26 (A)

For circuit (a),
$i_{R}=\left(\frac{10}{\frac{300 R_{\uparrow}}{300+R_{\uparrow}}+300}\right) \times \frac{300}{300+\mathrm{R}}$
Current through cell
[Note : $300 \Omega \& \mathrm{R}$ are in parallel which is in series with $100 \& 200 \Omega$]
$\therefore \mathrm{v}_{\mathrm{R}_{\mathrm{a}}}=\frac{10 \times 300 \mathrm{R}}{300 \mathrm{R}+300^{2}+300 \mathrm{R}}$
[$\mathrm{V}_{\mathrm{R}_{\mathrm{a}}}$ is potential difference across resistance R]
Fro circuit (b),

$$
\mathrm{i}_{\mathrm{R}}=\left(\frac{10}{\frac{(200+\mathrm{R})(300)}{200+\mathrm{R}+300}+100}\right) \times \frac{300}{300+200+\mathrm{R}}
$$

Current through cell
[Note : R \& 200Ω are in series which is in parallel with $300 \Omega \&$ again the combination is in series with 100Ω]
$\therefore \mathrm{V}_{\mathrm{R}_{\mathrm{b}}}=\frac{100 \times 300 \mathrm{R}}{300 \times 200+300 \mathrm{R}+100 \times 500+100 \mathrm{R}} \mathrm{m}$
[$V_{R_{b}}$ is potential difference across resistance R]
According to given situation

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}_{\mathrm{a}}}=\mathrm{V}_{\mathrm{R}_{\mathrm{b}}} \\
& \therefore 300 \mathrm{R}+9 \times 10^{4}+300 \mathrm{R}=6 \times 10^{4}+400 \mathrm{R}+5 \times 104 \\
& \Rightarrow 200 \mathrm{R}=2 \times 10^{4} \Rightarrow \mathrm{R}=100 \Omega
\end{aligned}
$$

Q. 27 (C)

$$
\mathrm{i}=\frac{\mathrm{E}}{\mathrm{R}} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}, \mathrm{Q}=\mathrm{CE}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right)
$$

Capacitor is charged to $\frac{E}{2}$,
So $\mathrm{Q}=\frac{\mathrm{CE}}{2}$
$\therefore \frac{\mathrm{CE}}{2}=\mathrm{CE}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right)$
$\frac{1}{2}=\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
$\mathrm{t}=\mathrm{RC}$ थn 2
Work done by battery $=\left(\mathrm{Q}_{\text {flown }}\right)(\Delta \mathrm{V})$

$$
=\left(\frac{\mathrm{CE}}{2}\right)(\mathrm{E})=\frac{\mathrm{CE}^{2}}{2}
$$

Heat dissipated $=\int_{0}^{\mathrm{RC} / \mathrm{n} 2} \mathrm{i}^{2} R d t$

$$
\begin{aligned}
& =\frac{E^{2}}{0} \int_{0}^{\mathrm{RC} \ln 2} \mathrm{e}^{-2 t / \mathrm{RC}} \cdot \mathrm{dt} \\
& =\frac{3}{4}\left(\frac{\mathrm{CE}}{2}\right)
\end{aligned}
$$

$\frac{\text { Work done }}{\text { Heat dissipated }}=\frac{\mathrm{CE}^{2} / 2}{\frac{3}{4}\left(\frac{\mathrm{CE}^{2}}{2}\right)}=\frac{4}{3}$

JEE MAIN

PREVIOUS YEAR'S

Q. 1 [2]

$$
\frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}=\frac{1_{2}}{1_{1}}=\frac{760}{380}=2
$$

Q. 2 [2]
Q. 3 (4)

It is balanced wheat stone bridge so $\mathrm{R}_{\mathrm{AB}}=\mathrm{R}$
Q. 4 [300]
$\omega=\mathrm{QV}$
$=15 \times 20=300$ Joules
Q. 5 (1)
$\mathrm{R}_{\mathrm{i}}=\frac{\rho \ell}{\mathrm{A}}$
$\mathrm{R}_{\mathrm{f}}=\frac{\rho(1.25 \ell)}{(\mathrm{A} / 1.25)}=\frac{\rho \ell}{\mathrm{A}}(1.25)^{2}$
$\therefore \quad \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{i}}(1.5625)$
$\therefore \quad \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{i}}(1+0.5625)$
$\therefore \quad \frac{\mathrm{R}_{\mathrm{f}}-\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}}=0.5625$
$\therefore \quad \% \frac{\Delta \mathrm{R}}{\mathrm{R}}=56.25 \%$
Q. 6 [5]

J $=\sigma E$
$=5 \times 10^{7} \times 10 \times 10^{-3}$
$=50 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}$
I $=\mathrm{J} \pi \mathrm{R}^{2}$

$$
=50 \times 10^{4} \times \pi\left(0.5 \times 10^{-3}\right)^{2}
$$

$=50 \times 10^{4} \times \pi \times 0.25 \times 10^{-6}$
$=125 \times 10^{-3} \pi$
$\mathrm{x}=5$
Q. 7 [11250]
$\frac{\mathrm{dq}}{\mathrm{dt}}=\left(20 \mathrm{t}+8 \mathrm{t}^{2}\right)$
$\int_{\mathrm{dq}}=\int_{0}^{15}\left(20 \mathrm{t}+8 \mathrm{t}^{2}\right) \mathrm{dt}$
$\Delta \mathrm{q}=\left[20 \frac{\mathrm{t}^{2}}{2}+\frac{8 \mathrm{t}^{3}}{3}\right]_{0}^{15}$
$=\frac{20 \times(15)^{2}}{2}+\frac{8 \times(15)^{3}}{3}$
$\Delta \mathrm{q}=11250 \mathrm{C}$
Q. 8 (1)

Current $\mathrm{I}=\frac{6-4}{10}=\frac{1}{5} \mathrm{~A}$
$\mathrm{v}_{\mathrm{x}}+4+8 \times \frac{1}{5}=\mathrm{vy} \xrightarrow{\text { I }}$
$v_{x}-v_{y}=-5.56 v$
Q. 9 (1)

As per the question

Resistance $=\frac{\rho(2 \ell)}{(\mathrm{A} / 2)}=\frac{4 \rho \ell}{\mathrm{~A}}$
\Rightarrow Current $=\frac{\mathrm{V}}{\mathrm{R}} \frac{\mathrm{VA}}{4 \rho \ell}$
Q. 10 (3)

$$
\mathrm{I}=\frac{21}{511}=3 \mathrm{~mA}
$$

Q. 11 (4)
$500=(1.5)_{2} \times \mathrm{R} \times 20$
$\mathrm{E}=(3)_{2} \times \mathrm{R} \times 20$
$\mathrm{E}=2000 \mathrm{~J}$
Q. 12 [2500]
$\mathrm{Q}=\mathrm{i} 2 \mathrm{RT}$
$\mathrm{R}=\frac{\mathrm{Q}}{\mathrm{i}^{2} \mathrm{t}}=\frac{10 \times 10^{-3}}{4 \times 10^{-6} \times 1}=2500 \Omega$
Q. 13 (2)
$\mathrm{i}=10 \mathrm{~A}, \mathrm{~A}=5 \mathrm{~mm}^{2}=5 \times 10^{-6} \mathrm{~m}^{2}$
and $\mathrm{v}_{\mathrm{d}}=2 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
We know, $\mathrm{i}=$ neAvd
$\therefore 10=\mathrm{n} \times 1.6 \times 10^{-19} \times 5 \times 10^{-6} \times 2 \times 10^{-3}$
$\Rightarrow \mathrm{n}=0.6^{25} \times 10^{28}=6^{25} \times 10^{25}$
Q. 14 (4)
$\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{s}$
$\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\mathrm{p}$
$\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{sp}$
$\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{np}^{2}$
$\mathrm{R}_{1}+\mathrm{R}_{2}=\frac{\mathrm{nR}_{1} \mathrm{R}_{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}$

$$
\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}}{\mathrm{R}_{1} \mathrm{R}_{2}}=\mathrm{n}
$$

for minimum value of n
$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$
$\therefore \mathrm{n}=\frac{(2 \mathrm{R})^{2}}{\mathrm{R}^{2}}=4$
Q. 15 (2)

$i=\frac{3 E}{R+r_{1}+r_{2}}$
$\mathrm{TPD}=2 \mathrm{E}-\mathrm{ir} 1=0$
$2 \mathrm{E}=\mathrm{ir} 1$
$2 \mathrm{E}=\frac{3 \mathrm{E} \times \mathrm{r}_{1}}{\mathrm{R}+\mathrm{r}_{1}+\mathrm{r}_{2}}$
$2 \mathrm{R}+2 \mathrm{r} 1+2 \mathrm{r} 2=3 \mathrm{r} 1$
$\mathrm{R}=\frac{\mathrm{r}_{1}}{2}-\mathrm{r}_{2}$
Q. 16 (3)

$\frac{x-10}{100}+\frac{x-y}{15}+\frac{x-0}{10}=0$
$53 x-20 y=30$
$\frac{y-10}{60}+\frac{y-x}{15}+\frac{y-0}{5}=0$
$17 y-4 x=10$
on solving (1) \& (2)
$\mathrm{x}=0.865$
$\mathrm{y}=0.792$
$\Delta \mathrm{V}=0.073 \mathrm{R}=15 \Omega$
$\mathrm{i}=4.87 \mathrm{~mA}$
Q. 17 [70]
$\mathrm{R}_{\mathrm{eq}_{1}}=\frac{50 \times 20}{70}=\frac{100}{7}$

$\mathrm{R}_{\mathrm{eq}}=\frac{170}{7}$
$\mathrm{v}_{1}=\left[\frac{170}{\frac{170}{7}}\right] \times 10=70 \mathrm{v}$
Q. 18 (48)

In Balanced conditions
$\frac{12}{6}=\frac{x}{72-x}$
$\mathrm{x}=48 \mathrm{~cm}$
Q. 19 (4)
\because in parallel
$R_{\text {net }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \underbrace{\square A}_{\ell}$
$\frac{\rho \ell}{2 \mathrm{~A}}=\frac{\rho_{1} \frac{\ell}{\mathrm{~A}} \times \rho_{2} \frac{\ell}{\mathrm{~A}}}{\rho_{1} \frac{\ell}{\mathrm{~A}}+\rho_{2} \frac{\ell}{\mathrm{~A}}}$
$\frac{\rho}{2}=\frac{6 \times 3}{6+3}=2$
$\rho=4$
Q. 20 (1)
Q. 21 (3)
Q. 22 (3)
Q. 23 [10]
Q. 24 (15)
Q. 25 (4)
Q. 26 (50)
Q. 27 (1)
Q. 28 (500)
Q. 29 (45)
Q. 30 (3)
Q. 31 (1)
Q. 32 (3)
Q. 33 (1)
Q. 34 (4)
Q. 35 (3)
Q. 36 (1)
Q. 37 (2)
mass of ice $\mathrm{m}=\rho \mathrm{A} \ell=10^{3} \times 10^{-4} \times 1=10^{-1} \mathrm{~kg}$
Energy required to melt the ice
$\mathrm{Q}=\mathrm{ms} \Delta \mathrm{T}+\mathrm{mL}$
$=10^{-1}\left(2 \times 10^{3} \times 10+3.33 \times 10^{5}\right)=3.53 \times 10^{4} \mathrm{~J}$
$\mathrm{Q}=\mathrm{i}^{2} \mathrm{RT} \Rightarrow 3.53 \times 10^{4}=\left(\frac{1}{2}\right)^{2}\left(4 \times 10^{3}\right)(\mathrm{t})$
Time $=35.3 \mathrm{sec}$ Option (2)
Q. 38 [9]
Q. 39 (4)
Q. 40 (4)
Q. 41 (NTA=2, ALLEN (Bonus))
Q. 42 (1)
Q. 43 (4)
Q. 44 (2)

$$
\begin{aligned}
& \frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=3 \\
& \frac{\left(12 \times 10^{-6} \times 10^{-2}\right) \ell \times 4}{\pi(2)^{2} \times 10^{-6}} \times \frac{\left(51 \times 10^{-6} \times 10^{-2}\right) \ell \times 4}{\pi(2)^{2} \times 10^{-6}} \\
& \frac{63 \times 10^{-6} \times 10^{-2} \times \ell \times 4}{\pi(2)^{2} \times 10^{-6}}
\end{aligned}
$$

$$
\Rightarrow \ell=97 \mathrm{~m}
$$

Option (2)
Q. 45 (3)

$\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{4}+\frac{1}{8}+\frac{1}{12}+\frac{1}{6}=\frac{6+3+2+4}{24}=\frac{15}{24}$
$\mathrm{R}_{\mathrm{eq}}=\frac{24}{15}=1.6 \Rightarrow \mathrm{R}_{\mathrm{T}}=1.6+0.6=2.2 \Omega$
$\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}_{\mathrm{T}}}=\frac{(2.2)^{2}}{2.2}=2.2 \mathrm{~W}$
Option (3)
Q. 46 (1)
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$
$\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=\frac{\Delta \mathrm{U}}{\Delta \mathrm{t}}+\frac{\Delta \mathrm{W}}{\Delta \mathrm{t}}$
$\frac{6000}{60}=\frac{\mathrm{J}}{\sec }+\frac{2.5 \times 10^{3}}{\Delta \mathrm{t}}+90$
$\Delta \mathrm{t}=250 \mathrm{sec}$
Option (1)
Q. 47 [3]
Q. 48 (3)
Q. 49 [2]
$\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}$
f is very large
$\therefore \mathrm{X}_{\mathrm{L}}$ is very large hence open circuit.
$\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}$
f is very large.
$\therefore \mathrm{X}_{\mathrm{C}}$ is very small, hence short circuit. Final circuit

$$
\mathrm{Z}_{\mathrm{eq}}=1+\frac{2 \times 2}{2+2}=2
$$

Q. 50
(4)

$\mathrm{R}_{\mathrm{eq}}=\frac{3 \times 3 / 2}{3+3 / 2}=\frac{9 / 2}{9 / 2}=1 \Omega$
Q. 51 [6]
Q. 52 [100]
Q. 53 (1)
Q. 54 (1)
Q. 55 [20]
Q. 56 (4)

First case $P_{1}=\frac{V^{2}}{R}=\frac{(240)^{2}}{36}$
Second case Resistance of each half $=18 \Omega$
$P_{2}=\frac{(240)^{2}}{18}=\frac{(240)^{2}}{18}=\frac{(240)^{2}}{9}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{1}{4}$

$$
x=4.00
$$

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (C)

$\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}} \Rightarrow \mathrm{R}=\frac{\rho \mathrm{L}}{\mathrm{tL}}=\frac{\rho}{\mathrm{t}}$
Independent of L .
Q. 2 (D)
$100=\frac{\mathrm{V}^{2}}{\mathrm{R}^{\prime}{ }_{100}} \Rightarrow \frac{1}{\mathrm{R}^{\prime}{ }_{100}}=\frac{100}{\mathrm{~V}^{2}}$
where $\mathrm{R}^{\prime}{ }_{100}$ is resistance at any temperature corresponds to 100 W
$60=\frac{\mathrm{V}^{2}}{\mathrm{R}^{\prime}{ }_{60}} \Rightarrow \frac{1}{\mathrm{R}^{\prime}{ }_{60}}=\frac{60}{\mathrm{~V}^{2}} \quad \Rightarrow 40=\frac{\mathrm{V}^{2}}{\mathrm{R}^{\prime}{ }_{40}}$
$\Rightarrow \frac{1}{\mathrm{R}^{\prime}{ }_{40}}=\frac{40}{\mathrm{~V}^{2}}$
From above equations we can say
$\frac{1}{\mathrm{R}^{\prime}{ }_{100}}>\frac{1}{\mathrm{R}^{\prime} 60}>\frac{1}{\mathrm{R}^{\prime}{ }_{40}}$.
So, most appropriate answer is option (D).
Q. 3 (C)

To verify Ohm's law one galvaometer is used as ammeter and other galvanometer is used as voltameter. Voltameter should have high resistance and ammeter should have low resistance as voltameter is used in parallel and ammeter in series that is in option (C).
Q. 4 [4]

$\mathrm{i}=\frac{2 \varepsilon}{2+\mathrm{R}}$
$\mathrm{J}_{1}=\left(\frac{2 \varepsilon}{2+\mathrm{R}}\right)^{2} \mathrm{R}$

$$
\begin{aligned}
& \varepsilon_{\mathrm{eq}}=\frac{\frac{\varepsilon}{1}+\frac{\varepsilon}{1}}{\frac{1}{1}+\frac{1}{1}}=\varepsilon \\
& \mathrm{r}_{\mathrm{eq}}=\frac{1}{2} \Rightarrow \mathrm{i}=\frac{\varepsilon}{\frac{1}{2}+\mathrm{R}}=\frac{2 \varepsilon}{2 \mathrm{R}+1} \\
& \mathrm{~J}_{2}=\left(\frac{2 \varepsilon}{1+2 \mathrm{R}}\right)^{2} \mathrm{R}
\end{aligned}
$$

$$
\text { Given } \mathrm{J}_{1}=\frac{9}{4} \mathrm{~J}_{2}
$$

$$
\Rightarrow\left(\frac{2 \varepsilon}{2+\mathrm{R}}\right)^{2} \mathrm{R}=\frac{9}{4}\left(\frac{2 \varepsilon}{1+2 \mathrm{R}}\right)^{2} \mathrm{R}
$$

$$
\Rightarrow \frac{2}{2+R}=\frac{3}{1+2 R}
$$

$$
\Rightarrow 2+4 \mathrm{R}=6+3 \mathrm{R}
$$

$$
\Rightarrow \mathrm{R}=4 \Omega
$$

Q. 5
Q. 6
[5]
$\varepsilon=\frac{\frac{\mathrm{E}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{E}_{2}}{\mathrm{r}_{2}}}{\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}}=\frac{\frac{6}{1}+\frac{3}{2}}{\frac{1}{1}+\frac{1}{2}}=\frac{15}{3}=5$ volt Ans.
(A), (B), (C), (D)

Due to input and output symmetry P and Q and S and T have same potential.

$R_{e q}=\frac{6 \times 12}{18}=4 \Omega$
$\mathrm{I}_{1}=\frac{12}{4}=3 \mathrm{~A}$
$I_{2}=\left(\frac{12}{6+12}\right) \times 3$
$\mathrm{I}_{2}=2 \mathrm{~A}$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{S}}=2 \times 4=8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{T}}=1 \times 8=8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{Q}} \Rightarrow$ Current through $\mathrm{PQ}=0(\mathrm{~A})$
$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{Q}} \Rightarrow \mathrm{V}_{\mathrm{Q}}>\mathrm{V}_{\mathrm{S}}$
(C)
$\mathrm{I}_{1}=3 \mathrm{~A}$
(B)
$\mathrm{I}_{2}=2 \mathrm{~A}$
(D)
Q. 7 (B), (D)

In given Kettle $R=\rho \frac{L}{\pi\left(\frac{d}{2}\right)^{2}}=\frac{4 \rho L}{\pi d^{2}}$
$P=\frac{V^{2}}{R}$
In second Kettle $R_{1}=\rho \frac{L}{\pi d^{2}} R_{2}=\frac{\rho L}{\pi d^{2}}$
So $R_{1}=R_{2}=\frac{R}{4}$
If wires are in parallel equivalent resistance
$\mathrm{R}_{\mathrm{P}}=\frac{\mathrm{R}}{8}$
then power $P_{P}=8 P$
so it will take 0.5 minute
If wires are in series equivalent resistance
$R_{S}=\frac{R}{2}$
then power $P_{S}=2 P$
so it will take 2 minutes
Q. 8 (A), (B), (D)

Potential of Junction O
$\mathrm{V}_{0}=\frac{\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}+0-\frac{\mathrm{V}_{2}}{\mathrm{R}_{3}}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}}$

Current through R_{2} will be zero if
$\mathrm{V}_{0}=0 \Rightarrow \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{3}}$
Q. 9 [5]

$$
\begin{aligned}
& \frac{6}{1000}(G+4990)=30 \\
& \Rightarrow G+4990=\frac{30,000}{6}=5000 \quad \Rightarrow G=10
\end{aligned}
$$

$$
\frac{6}{1000} \times 10=\left(1.5-\frac{6}{1000}\right) \mathrm{S}
$$

$$
\Rightarrow S=\frac{60}{1494}=\frac{2 n}{249}
$$

$$
\Rightarrow \mathrm{n}=\frac{249 \times 30}{1494}=\frac{2490}{498}=5
$$

Q. 10 (C)

For balanced meter bridge
$\frac{X}{R}=\frac{\ell}{(100-\ell)}$
$\frac{X}{40}=\frac{90}{60} \Rightarrow X=60 \Omega$
$X=R \frac{\ell}{(100-\ell)}$
$\frac{\Delta \mathrm{X}}{\mathrm{X}}=\frac{\Delta \ell}{\ell}+\frac{\Delta \ell}{100-\ell}=\frac{0.1}{40}+\frac{0.1}{60}$
$\Delta \mathrm{X}=0.25$
so $X=(60 \pm 0.25) \Omega$

Q. 11 (A,C)

For maximum voltage range across a galvanometer, all the elements must be connected in series. For maximum current range through a galvanometer, all the elements should be connected in parallel.
(A, C)

Q. 12 (A)

Balls are repelled by lower positive plate and hits upper plate where the balls will get negatively charged and will now get attracted to the lower plate which is positively charged. Therefore motion of the balls will be periodic.
Hence, (A)
Q. 13 (C)
$\frac{\mathrm{K}_{\mathrm{q}}}{\mathrm{r}}=\mathrm{V}_{0} \Rightarrow \mathrm{q}=\frac{\mathrm{V}_{0} \mathrm{r}}{\mathrm{K}}$
$\frac{1}{2}\left(\frac{\mathrm{qE}}{\mathrm{m}}\right) \mathrm{t}^{2}=\mathrm{h} \Rightarrow \frac{1}{2} \frac{\mathrm{~V}_{0} \mathrm{r}}{\mathrm{K}} \frac{2 \mathrm{~V}_{0}}{\mathrm{hm}} \mathrm{t}^{2}=\mathrm{h}$
$\mathrm{t}=\frac{\mathrm{h}}{\mathrm{V}_{0}} \sqrt{\frac{\mathrm{mK}}{\mathrm{r}}}$
Average current, $I_{\text {avg. }}=\frac{2 q}{t}=\frac{2 V_{0}^{2}}{h} \frac{r \sqrt{r}}{m K \sqrt{K}}$
Hence, (C)
Q. 14 [5.55]
$\begin{array}{lr}\mathrm{n}=50 \text { tunrs } & \mathrm{A}=2 \times 10^{-4} \mathrm{~m}^{2} \\ \mathrm{~B}=0.02 \mathrm{~T} & \mathrm{~K}=10^{-4} \\ \mathrm{Q}_{\mathrm{m}}=0.2 \mathrm{rad} & \mathrm{R}_{\mathrm{g}}=50 \Omega \\ \mathrm{I}_{\mathrm{A}}=0-1.0 \mathrm{~A} & \tau=\mathrm{MB}=\mathrm{C} \theta, \mathrm{M}=\mathrm{nIA}\end{array}$
$\mathrm{BINA}=\mathrm{Cq}$
$0.02 \times 1 \times 50 \times 2 \times 10^{-4}=10^{-4} \times 0.210$
$\mathrm{I}_{\mathrm{g}}=0.1 \mathrm{~A}$
For galvanometer, resistance is to be connected to ammeter in shunt.

$\mathrm{I}_{\mathrm{g}} \times \mathrm{R}_{\mathrm{g}}=\left(\mathrm{I}-\mathrm{I}_{\mathrm{g}}\right) \mathrm{S}$
$0.1 \times 50=(1-0.1) \mathrm{S}$
$S=\frac{50}{9}=5.55$
Q. 15 (A,C)

$2 \times 10^{-6} \times 10=10^{-3} \mathrm{R}_{\mathrm{A}} \therefore=0.02 \Omega$

$y 50000=(x-y) 1000$
$\therefore 51 \mathrm{y}=\mathrm{x}$
Reading $=\frac{y 50000}{x}=980$
Q. 16 (A, C, D)

All the elements are in parallel
$\therefore \int \frac{1}{\mathrm{dr}}=\int_{\mathrm{R} 1}^{\mathrm{R}_{2}} \frac{\mathrm{tdx}}{\rho \pi \mathrm{x}}$
$\frac{1}{\mathrm{r}}=\frac{\mathrm{t}}{\pi \rho} \ln \left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)$

$$
\text { Resistance }=\frac{\pi \rho}{\mathrm{t} \ell \mathrm{n}\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)}
$$

$$
\mathrm{i}=\frac{\mathrm{V}_{0} \mathrm{t} \ln \left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)}{\pi \rho}
$$

(A)
$(-\mathrm{e} \overrightarrow{\mathrm{E}})$ will be inward direction in order to provide centripetal acceleration. Therefore electric field will be radially outward
$\mathrm{V}_{\text {outer }}<\mathrm{V}_{\text {inner }}$
(C)
$\frac{\mathrm{mV}_{\mathrm{d}}^{2}}{\mathrm{r}}=\mathrm{q} \overrightarrow{\mathrm{E}}$
$\mathrm{E}=\frac{\mathrm{mV}_{\mathrm{d}}^{2}}{\mathrm{qr}} \quad\left(\mathrm{I}=\mathrm{neAV}_{\mathrm{d}} \Rightarrow \mathrm{V}_{\mathrm{d}} \propto \mathrm{i}\right)$
$\Delta \mathrm{V}=\int \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dr}}$
$\Delta V \propto V_{d}^{2}$
$\Delta V \propto I^{2}$
Q. 17 (0.26 to 0.27)
$\mathrm{R}_{3}^{\prime}=300(1+\alpha \Delta \mathrm{T})$
$=312 \Omega$
Now

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{50}{372} \text { and } \mathrm{I}_{2}=\frac{50}{600} \\
& \mathrm{~V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{T}}=312 \mathrm{I}_{1}-500 \mathrm{I}_{2} \\
& =41.94-41.67 \\
& -0.27 \mathrm{~V}
\end{aligned}
$$

Q. 18 [1.33]

Q. 19 [0.67]

$\mathrm{V}_{\mathrm{A}}-1 \cdot \mathrm{i}_{1}-1+2-2 \mathrm{i}_{1}=\mathrm{V}_{\mathrm{A}}$

